Purity- and entropy-bounded uncertainty relations for mixed quantum states

We give a review of different forms of uncertainty relations for mixed quantum states obtained over the last two decades and present many new results. The nonclassical properties of mixed states minimizing the purity-bounded uncertainty relations (a possibility of sub-Poissonian statistics, squeezing etc) are considered. The normalized Hilbert–Schmidt distance between the minimizing states and the ‘most classical’ thermal states is used as a ‘measure of nonclassicality’ together with the Mandel parameter. For highly mixed minimizing states (whose ‘purities’ are very small), the normalized Hilbert–Schmidt distance tends to a finite limit, which depends on the nature of the state (15% of the maximal possible distance if the deviation from pure states is characterized by the ‘standard purity’ Tr ˆ ρ 2 and 37% if the ‘superpurity’ limr→0[Tr( ˆ ρ 1+1/r )] r is chosen as a measure of deviation).

[1]  H. J. Groenewold On the Principles of Elementary Quantum Mechanics , 1946 .

[2]  A. Wehrl On the relation between classical and quantum-mechanical entropy , 1979 .

[3]  U. Fano Description of States in Quantum Mechanics by Density Matrix and Operator Techniques , 1957 .

[4]  V. Man'ko,et al.  Phase space eigenfunctions of multidimensional quadratic hamiltonians , 1986 .

[5]  J. Hilgevoord,et al.  Overall width, mean peak width and the uncertainty principle , 1983 .

[6]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[7]  Halliwell,et al.  Generalized uncertainty relations and long-time limits for quantum Brownian motion models. , 1995, Physical review. D, Particles and fields.

[8]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[9]  Vladimir I. Man’ko,et al.  GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES , 1980 .

[10]  V. Man'ko,et al.  Hilbert-Schmidt distance and non-classicality of states in quantum optics , 2000 .

[11]  I. Malkin,et al.  Linear adiabatic invariants and coherent states , 1973 .

[12]  Roy Leipnik,et al.  Entropy and the Uncertainty Principle , 1959, Inf. Control..

[13]  J. E. Moyal,et al.  The exact transition probabilities of quantum-mechanical oscillators calculated by the phase-space method , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Suzuki,et al.  Thermal information-entropic uncertainty relation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  Mj Martin Bastiaans Lower bound in the uncertainty principle for partially coherent light , 1983 .

[16]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[17]  Mj Martin Bastiaans Uncertainty principle for partially coherent light , 1983 .

[18]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[19]  E. Wolf,et al.  Correlations in open quantum systems and associated uncertainty relations , 2001 .

[20]  A. Lazaruk,et al.  Uncertainty relation for multidimensional correlation functions , 1998 .

[21]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[22]  A. Vourdas,et al.  WEYL AND WIGNER FUNCTIONS IN AN EXTENDED PHASE-SPACE FORMALISM , 1998 .

[23]  A. Starikov,et al.  Effective number of degrees of freedom of partially coherent sources , 1982 .

[24]  Richard Bourret,et al.  A Note on an Information Theoretic Form of The Uncertainty Principle , 1958, Inf. Control..

[25]  D. Brody,et al.  Generalised Heisenberg relations for quantum statistical estimation , 1997 .

[26]  A. Wehrl General properties of entropy , 1978 .

[27]  W. Beckner Inequalities in Fourier analysis , 1975 .

[28]  E. Wichmann Density Matrices Arising from Incomplete Measurements , 1963 .

[29]  Entropic uncertainty relations , 1997 .

[30]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[31]  V. Man'ko,et al.  Quantum nonstationary oscillator: Models and applications , 1995 .

[32]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  J. Hilgevoord,et al.  Uncertainty principle and uncertainty relations , 1985 .

[34]  Brody,et al.  Geometry of Quantum Statistical Inference. , 1996, Physical review letters.

[35]  Michael J. W. Hall,et al.  Universal geometric approach to uncertainty, entropy, and information , 1999 .

[36]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[37]  Structure of the density matrix providing the minimum generalized uncertainty relation for mixed states , 2000, quant-ph/0006055.

[38]  A. Papoulis Ambiguity function in Fourier optics , 1974 .

[39]  Hall Noise-dependent uncertainty relations for the harmonic oscillator. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[40]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[41]  Generalized uncertainty relations and coherent and squeezed states. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[43]  Zoltán Daróczy,et al.  Generalized Information Functions , 1970, Inf. Control..

[44]  V. Dodonov,et al.  Universal integrals of motion and universal invariants of quantum systems , 2000 .

[45]  Kodi Husimi,et al.  Some Formal Properties of the Density Matrix , 1940 .

[46]  F. Berezin,et al.  Method of Second Quantization , 1966 .

[47]  V. V. Dodonov,et al.  ENERGY-SENSITIVE AND CLASSICAL-LIKE' DISTANCES BETWEEN QUANTUM STATES , 1999 .

[48]  H. P. Robertson An Indeterminacy Relation for Several Observables and Its Classical Interpretation , 1934 .

[49]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[50]  J. Plebański Wave Functions of a Harmonic Oscillator , 1956 .

[51]  I. Hirschman,et al.  A Note on Entropy , 1957 .

[52]  Mj Martin Bastiaans Uncertainty principle and informational entropy for partially coherent light , 1986 .