The ciliopathies: an emerging class of human genetic disorders.

Cilia and flagella are ancient, evolutionarily conserved organelles that project from cell surfaces to perform diverse biological roles, including whole-cell locomotion; movement of fluid; chemo-, mechano-, and photosensation; and sexual reproduction. Consistent with their stringent evolutionary conservation, defects in cilia are associated with a range of human diseases, such as primary ciliary dyskinesia, hydrocephalus, polycystic liver and kidney disease, and some forms of retinal degeneration. Recent evidence indicates that ciliary defects can lead to a broader set of developmental and adult phenotypes, with mutations in ciliary proteins now associated with nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome. The molecular data linking seemingly unrelated clinical entities are beginning to highlight a common theme, where defects in ciliary structure and function can lead to a predictable phenotypic pattern that has potentially predictive and therapeutic value.

[1]  W. V. So,et al.  Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome , 2002, Nature Genetics.

[2]  L. Peltonen,et al.  MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome , 2006, Nature Genetics.

[3]  G. Pazour,et al.  Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease , 2002, Current Biology.

[4]  N. Copeland,et al.  Reversal of left-right asymmetry: a situs inversus mutation. , 1993, Science.

[5]  E. Pierce,et al.  The Retinitis Pigmentosa 1 Protein Is a Photoreceptor Microtubule-Associated Protein , 2004, The Journal of Neuroscience.

[6]  A. Wright,et al.  Mutations of RPGR in X‐linked retinitis pigmentosa (RP3) , 2002, Human mutation.

[7]  N. Heintz,et al.  Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. , 2004, Human molecular genetics.

[8]  Alessandra Boletta,et al.  PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2 , 2002, Cell.

[9]  E. Wisse,et al.  Ultrastructure and function of hepatic fat-storing and pit cells. , 1990, Journal of electron microscopy technique.

[10]  A. Ballabio,et al.  Identification of the gene for oral-facial-digital type I syndrome. , 2001, American journal of human genetics.

[11]  O. A. Cabello,et al.  Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways , 2005, Nature Genetics.

[12]  E. Robertis Morphogenesis of the retinal rods; an electron microscope study. , 1956 .

[13]  Qihong Zhang,et al.  Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function , 2005, PLoS genetics.

[14]  V. Sukhatme,et al.  Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Coffey,et al.  Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. , 2000, Experimental cell research.

[16]  N. LaRusso,et al.  Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. , 2003, Human molecular genetics.

[17]  D. Supp,et al.  Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice , 1997, Nature.

[18]  M. Hamon,et al.  Localization of 5-HT6 receptors at the plasma membrane of neuronal cilia in the rat brain , 2000, Brain Research.

[19]  W. Snell,et al.  Kinesin-II is required for flagellar sensory transduction during fertilization in Chlamydomonas. , 2002, Molecular biology of the cell.

[20]  J. Weissenbach,et al.  A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. , 1997, Human molecular genetics.

[21]  L. Wilson,et al.  The mechanisms of dorsoventral patterning in the vertebrate neural tube. , 2005, Developmental biology.

[22]  L. Goldstein,et al.  Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Ong,et al.  Detection of proximal tubular motile cilia in a patient with renal sarcoidosis associated with hypercalcemia. , 2005, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[24]  M. Sandberg,et al.  A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  N. Katsanis,et al.  MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis , 2005, Journal of Cell Science.

[26]  R. Megele,et al.  Primary cilia in normal human neocortical neurons. , 1989, Zeitschrift fur mikroskopisch-anatomische Forschung.

[27]  A. Merdes,et al.  Assembly of centrosomal proteins and microtubule organization depends on PCM-1 , 2002, The Journal of cell biology.

[28]  R. Kosaki,et al.  Absent inner dynein arms in a fetus with familial hydrocephalus‐situs abnormality , 2004, American journal of medical genetics. Part A.

[29]  P. Mehlen,et al.  Morphogens and cell survival during development. , 2005, Journal of neurobiology.

[30]  The European Polycystic Kidney Disease Consortium The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16 , 2004, Pediatric Nephrology.

[31]  A. Schier,et al.  Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis , 2005, Development.

[32]  Alfonso Baldi,et al.  Identification of the gene that, when mutated, causes the human obesity syndrome BBS4 , 2001, Nature Genetics.

[33]  R. Bacallao,et al.  Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. , 2002, Molecular biology of the cell.

[34]  J. Lupski,et al.  Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates , 2005, Nature Genetics.

[35]  A. Wright,et al.  A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities , 2004, Human Genetics.

[36]  G. Pazour,et al.  The vertebrate primary cilium is a sensory organelle. , 2003, Current opinion in cell biology.

[37]  T. Strachan,et al.  Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination , 2003, Nature Genetics.

[38]  H. Lehrach,et al.  Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry , 2002, Nature Genetics.

[39]  G. Pazour,et al.  Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella , 2000, The Journal of cell biology.

[40]  Colin A. Johnson,et al.  The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat , 2006, Nature Genetics.

[41]  M. Brueckner,et al.  Two Populations of Node Monocilia Initiate Left-Right Asymmetry in the Mouse , 2003, Cell.

[42]  J. Scholey,et al.  Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons , 2004, Nature Cell Biology.

[43]  A. Munnich,et al.  Antenatal presentation of Bardet-Biedl syndrome may mimic Meckel syndrome. , 2005, American journal of human genetics.

[44]  George B. Witman,et al.  Introduction to Cilia and Flagella , 1990 .

[45]  G. Germino,et al.  Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents , 2000, Nature.

[46]  K. Anderson,et al.  Cilia and Hedgehog responsiveness in the mouse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Schulz,et al.  Selective targeting of somatostatin receptor 3 to neuronal cilia , 1999, Neuroscience.

[48]  F. Bleicher,et al.  Odontoblast primary cilia: facts and hypotheses , 2004, Cell Biology International.

[49]  A. Woolf,et al.  OFD1 is a centrosomal/basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis. , 2004, Journal of the American Society of Nephrology : JASN.

[50]  W. M. Layton Random determination of a developmental process: reversal of normal visceral asymmetry in the mouse. , 1976, The Journal of heredity.

[51]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[52]  G. Germino,et al.  PKD1 interacts with PKD2 through a probable coiled-coil domain , 1997, Nature Genetics.

[53]  C. Tickle,et al.  Patterning systems--from one end of the limb to the other. , 2003, Developmental cell.

[54]  R. Reinhardt,et al.  Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin , 2005, Nature Genetics.

[55]  E. Ginns,et al.  A new gene, EVC2, is mutated in Ellis-van Creveld syndrome. , 2002, Molecular genetics and metabolism.

[56]  W. Marshall,et al.  Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[58]  S. Fisher,et al.  Dissection of epistasis in oligogenic Bardet–Biedl syndrome , 2006, Nature.

[59]  Didier Y. R. Stainier,et al.  Vertebrate Smoothened functions at the primary cilium , 2005, Nature.

[60]  V. Sheffield,et al.  Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). , 2001, Human molecular genetics.

[61]  G. Pazour,et al.  Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs , 2005, Molecular reproduction and development.

[62]  N. Hirokawa,et al.  Mechanism of Nodal Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination , 2005, Cell.

[63]  K. Kozminski,et al.  A motility in the eukaryotic flagellum unrelated to flagellar beating. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  V. Sheffield,et al.  Mutations in MKKS cause Bardet-Biedl syndrome , 2001, Nature Genetics.

[65]  I. Glass,et al.  The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. , 2004, American journal of human genetics.

[66]  M. Polymeropoulos,et al.  Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis , 2000, Nature Genetics.

[67]  R. Sudbrak,et al.  A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. , 2002, American journal of human genetics.

[68]  Bethan E. Hoskins,et al.  Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse , 2004, Nature Genetics.

[69]  R. Myklebust,et al.  Primary 9+0 cilia in the embryonic and the adult human heart , 1977, Anatomy and Embryology.

[70]  David I. Wilson,et al.  Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome , 2002, Nature Genetics.

[71]  B. Yoder,et al.  An incredible decade for the primary cilium: a look at a once-forgotten organelle. , 2005, American journal of physiology. Renal physiology.

[72]  Val C. Sheffield,et al.  Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome , 2002, Nature Genetics.

[73]  F. Lublin,et al.  Hydrocephalus in Kartagener's syndrome. , 1986, Ear, nose, & throat journal.

[74]  Jing Zhou,et al.  Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells , 2003, Nature Genetics.

[75]  Daniel Chui,et al.  Genetic Evidence for Selective Transport of Opsin and Arrestin by Kinesin-II in Mammalian Photoreceptors , 2000, Cell.

[76]  T. Benzing,et al.  Nephrocystin interacts with Pyk2, p130Cas, and tensin and triggers phosphorylation of Pyk2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[78]  J. Scholey,et al.  Heterotrimeric Kinesin-II Is Required for the Assembly of Motile 9+2 Ciliary Axonemes on Sea Urchin Embryos , 1997, The Journal of cell biology.

[79]  Edwin M Stone,et al.  Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). , 2004, American journal of human genetics.

[80]  P. Hansson,et al.  A thin-section and freeze-fracture study of the pulp blood vessels in feline and human teeth. , 1984, Archives of oral biology.

[81]  David I. Wilson,et al.  Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. , 2005, Diabetes.

[82]  Bernhard Schermer,et al.  Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis , 2003, Nature Genetics.

[83]  N. Hirokawa,et al.  Abnormal nodal flow precedes situs inversus in iv and inv mice. , 1999, Molecular cell.

[84]  L. Ostrowski,et al.  A Proteomic Analysis of Human Cilia , 2002, Molecular & Cellular Proteomics.

[85]  D. Schlessinger,et al.  X-linked situs abnormalities result from mutations in ZIC3 , 1997, Nature Genetics.

[86]  K J Millen,et al.  The ZIC gene family in development and disease , 2005, Clinical genetics.

[87]  琢人 永井,et al.  腎機能が正常で発見されたNephronophthisis-Medullary cystic kidney disease Complexの1例 , 2007 .

[88]  Keith A. Boroevich,et al.  Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome , 2004, Nature Genetics.

[89]  H. Cantiello,et al.  Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Richard A. Lewis,et al.  Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome , 2000, Nature Genetics.

[91]  K. Mikoshiba,et al.  Zic2 regulates the kinetics of neurulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Edwin M Stone,et al.  Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. , 2005, American journal of human genetics.

[93]  Tanya M. Teslovich,et al.  Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome , 2003, Nature.

[94]  N. Hirokawa,et al.  Left-Right Asymmetry and Kinesin Superfamily Protein KIF3A: New Insights in Determination of Laterality and Mesoderm Induction by kif3A− /− Mice Analysis , 1999, The Journal of cell biology.

[95]  J. Lupski,et al.  Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. , 2003, American journal of human genetics.

[96]  Miguel Armengot,et al.  Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Thomas,et al.  The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. , 2001, Development.

[98]  J. Yates,et al.  Proteomic Analysis of Isolated Chlamydomonas Centrioles Reveals Orthologs of Ciliary-Disease Genes , 2005, Current Biology.

[99]  Kaiyao Huang,et al.  Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii. , 2004, Molecular biology of the cell.

[100]  S. Amselem,et al.  Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. , 1999, American journal of human genetics.

[101]  Z. Zhao,et al.  A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease. , 2002, Genomics.

[102]  B. Afzelius A human syndrome caused by immotile cilia. , 1976, Science.

[103]  Siep Thomas,et al.  THE POLYCYSTIC KIDNEY-DISEASE-1 GENE ENCODES A 14-KB TRANSCRIPT AND LIES WITHIN A DUPLICATED REGION ON CHROMOSOME-16 , 1994 .

[104]  Vicente E. Torres,et al.  The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein , 2002, Nature Genetics.

[105]  W E Sweeney,et al.  Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. , 1994, Science.

[106]  M. Robinson,et al.  Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. , 2003, Human molecular genetics.

[107]  J. Rosenbaum,et al.  Intraflagellar transport , 2002, Nature Reviews Molecular Cell Biology.

[108]  Lee Niswander,et al.  Hedgehog signalling in the mouse requires intraflagellar transport proteins , 2003, Nature.

[109]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[110]  J. Belmont,et al.  Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects , 2022 .

[111]  T. L. McGee,et al.  Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa , 1999, Nature Genetics.

[112]  T. Strachan,et al.  Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. , 2002, Human molecular genetics.

[113]  R. M. Costanzo,et al.  Morphology of the human olfactory epithelium , 1990, The Journal of comparative neurology.

[114]  Gary Ruvkun,et al.  Analysis of xbx genes in C. elegans , 2005, Development.

[115]  E. Avner,et al.  PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. , 2002, American journal of human genetics.

[116]  B. Yoder,et al.  Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. , 2001, Molecular biology of the cell.

[117]  S. Somlo,et al.  Human disease: Calcium signaling in polycystic kidney disease , 2001, Current Biology.

[118]  L. Guay-Woodford,et al.  The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. , 2002, Journal of the American Society of Nephrology : JASN.

[119]  D. Hong,et al.  RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. , 2003, Investigative ophthalmology & visual science.

[120]  W. Snell,et al.  Flagellar Adhesion between Mating Type Plus and Mating Type Minus Gametes Activates a Flagellar Protein-tyrosine Kinase during Fertilization in Chlamydomonas* , 2003, Journal of Biological Chemistry.

[121]  Randall T Moon,et al.  A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. , 2003, Developmental cell.

[122]  Bethan E. Hoskins,et al.  The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression , 2004, Nature Genetics.

[123]  Keith A. Boroevich,et al.  Functional Genomics of the Cilium, a Sensory Organelle , 2005, Current Biology.

[124]  R. Lewis,et al.  BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus , 2006, Nature Genetics.

[125]  J. Whitfield The neuronal primary cilium--an extrasynaptic signaling device. , 2004, Cellular signalling.

[126]  K. Shiota,et al.  Signaling cascade coordinating growth of dorsal and ventral tissues of the vertebrate brain, with special reference to the involvement of Sonic hedgehog signaling , 2005, Anatomical science international.

[127]  Shankar Subramaniam,et al.  Decoding Cilia Function Defining Specialized Genes Required for Compartmentalized Cilia Biogenesis , 2004, Cell.

[128]  J. Goodship,et al.  Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. , 2003, American journal of human genetics.

[129]  A. Milam,et al.  Identification and subcellular localization of the RP1 protein in human and mouse photoreceptors. , 2002, Investigative ophthalmology & visual science.

[130]  N. Ashizawa,et al.  Three‐dimensional structure of the rat pancreatic duct in normal and inflammated pancreas , 1997, Microscopy research and technique.

[131]  S. R. Wicks,et al.  Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. , 2004, Genes & development.

[132]  E. Pugh,et al.  RP1 is required for the correct stacking of outer segment discs. , 2003, Investigative ophthalmology & visual science.

[133]  F. Hildebrandt,et al.  A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1 , 1997, Nature Genetics.

[134]  Tanya M. Teslovich,et al.  The centrosome in human genetic disease , 2005, Nature Reviews Genetics.

[135]  U. Goodenough,et al.  Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes , 1980, The Journal of cell biology.

[136]  Fangming Lina,et al.  Polycystic kidney disease: the cilium as a common pathway in cystogenesis , 2004, Current opinion in pediatrics.

[137]  A. Nayır,et al.  The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin , 2002, Nature Genetics.

[138]  K. Millen,et al.  Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation , 2004, Nature Genetics.

[139]  S. Baker,et al.  The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance , 2002, The Journal of cell biology.

[140]  A. Ciccodicola,et al.  A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X–linked retinitis pigmentosa (RP3) , 1996, Nature Genetics.

[141]  N. Katsanis The oligogenic properties of Bardet-Biedl syndrome. , 2004, Human molecular genetics.

[142]  K. W. Zimmermann,et al.  Beiträge zur Kenntniss einiger Drüsen und Epithelien , 1898 .

[143]  Patricia A. Gabow,et al.  PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein , 1996, Science.

[144]  久保亮治 Centriolar satellites : molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis , 2000 .

[145]  M. Ritchie,et al.  Nephrocystin-conserved Domains Involved in Targeting to Epithelial Cell-Cell Junctions, Interaction with Filamins, and Establishing Cell Polarity* , 2002, The Journal of Biological Chemistry.

[146]  Jeffrey D. Axelrod,et al.  A Second Canon , 2003 .

[147]  E. Zammarchi,et al.  Immotile cilia syndrome associated with hydrocephalus and precocious puberty: a case report. , 1993, European journal of pediatric surgery.