From Equivalence to Almost-Equivalence, and Beyond - Minimizing Automata with Errors - (Extended Abstract)

We introduce E-equivalence, which is a straightforward generalization of almost-equivalence. While almost-equivalence asks for ordinary equivalence up to a finite number of exceptions, in E-equivalence these exceptions or errors must belong to a (regular) set E. The computational complexity of minimization problems and their variants w.r.t. almost- and E-equivalence are studied. Roughly speaking, whenever nondeterministic finite automata (NFAs) are involved, most minimization problems, and their equivalence problems they are based on, become PSPACE-complete, while for deterministic finite automata (DFAs) the situation is more subtle. For instance, hyper-minimizing DFAs is NL-complete, but E-minimizing DFA s is NP-complete, even for finite E. The obtained results nicely fit to the known ones on ordinary minimization for finite automata. Moreover, since hyper-minimal and E-minimal automata are not necessarily unique (up to isomorphism as for minimal DFAs), we consider the problem of counting the number of these minimal automata. It turns out that counting hyper-minimal DFAs can be done in FP, while counting E-minimal DFA s is #P-hard, and belongs to the counting class #·coNP.

[1]  Andrew Badr,et al.  HYPER-MINIMIZATION IN O(n2) , 2008, Int. J. Found. Comput. Sci..

[2]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[3]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[4]  Artur Jez,et al.  Hyper-minimisation Made Efficient , 2009, MFCS.

[5]  Andrzej Szepietowski,et al.  Closure properties of hyper-minimized automata , 2011, RAIRO Theor. Informatics Appl..

[6]  Markus Holzer On Emptiness and Counting for Alternating Finite Automata , 1995, Developments in Language Theory.

[7]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[8]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[9]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[10]  戸田 誠之助,et al.  Computational complexity of counting complexity classes , 1991 .

[11]  Neil D. Jones,et al.  New problems complete for nondeterministic log space , 1976, Mathematical systems theory.

[12]  David Maier,et al.  Review of "Introduction to automata theory, languages and computation" by John E. Hopcroft and Jeffrey D. Ullman. Addison-Wesley 1979. , 1980, SIGA.

[13]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[14]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[15]  Dung T. Huynh,et al.  The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..

[16]  Artur Jez,et al.  On Minimising Automata with Errors , 2011, MFCS.

[17]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[18]  Andreas Maletti,et al.  Optimal Hyper-Minimization , 2011, Int. J. Found. Comput. Sci..

[19]  Andreas Maletti,et al.  An nlogn algorithm for hyper-minimizing a (minimized) deterministic automaton , 2010, Theor. Comput. Sci..

[20]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[21]  Carme Àlvarez,et al.  A Very Hard log-Space Counting Class , 1993, Theor. Comput. Sci..

[22]  Richard E. Ladner Polynomial Space Counting Problems , 1989, SIAM J. Comput..

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Viliam Geffert,et al.  Hyper-minimizing minimized deterministic finite state automata , 2009, RAIRO Theor. Informatics Appl..

[25]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[26]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[27]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[28]  Heribert Vollmer,et al.  The satanic notations , 1995, SIGACT News.

[29]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[30]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.