Reduced order modeling in nonlinear homogenization

Two nonlinear reduced order homogenization methods are described: pRBMOR and NUTFA.Both methods are based on the framework of the transformation field analysis (TFA).A comparison of advantages and disadvantages of the two methodologies is presented.Numerical 2D and 3D examples considering complex load paths are provided.Both approaches accurately predict the mechanical response of nonlinear composites. Computationally inexpensive nonlinear homogenization methods are much sought after in academia and industry. However, the accuracy and the accessibility of the methods play an important role. Two nonlinear homogenization methods for microstructured solid materials are investigated in this work: the pRBMOR (Fritzen and Leuschner, 2013; Fritzen et al., 2014) and the NUTFA (Sepe et al., 2013). Both methods are based on ideas of the nonuniform transformation field analysis (NTFA; Michel and Suquet, 2003, 2004). A detailed comparison with respect to accuracy, storage requirements and the evolution of the reduced degrees of freedom is carried out. Numerical examples for two- and three-dimensional problems undergoing nonproportional load paths are presented.

[1]  E. Schnack,et al.  Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations , 2009 .

[2]  Elio Sacco,et al.  A nonlinear homogenization procedure for periodic masonry , 2009 .

[3]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[4]  Felix Fritzen,et al.  GPU accelerated computational homogenization based on a variational approach in a reduced basis framework , 2014 .

[5]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[6]  Felix Fritzen,et al.  The finite element square reduced (FE2R) method with GPU acceleration: towards three‐dimensional two‐scale simulations , 2016 .

[7]  G. Dvorak Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  Jean-Louis Chaboche,et al.  Towards a micromechanics based inelastic and damage modeling of composites , 2001 .

[9]  Thomas Böhlke,et al.  Nonuniform transformation field analysis of materials with morphological anisotropy , 2011 .

[10]  Pedro Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials , 1996 .

[11]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[12]  Elio Sacco A Non Linear Homogenization Procedure for Periodic Masonry , 2009 .

[13]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[14]  Marco Paggi,et al.  A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules , 2013, 1303.7452.

[15]  E. Sacco,et al.  Micromechanics and Homogenization of SMA-Wire-Reinforced Materials , 2005 .

[16]  Thomas Böhlke,et al.  Three‐dimensional finite element implementation of the nonuniform transformation field analysis , 2010 .

[17]  Thomas Böhlke,et al.  Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites , 2011 .

[18]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[19]  U. Galvanetto,et al.  Constitutive relations involving internal variables based on a micromechanical analysis , 2000 .

[20]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[21]  P. Ponte Castañeda,et al.  Homogenization estimates for multi-scale nonlinear composites , 2011 .

[22]  Sonia Marfia,et al.  Analysis of SMA composite laminates using a multiscale modelling technique , 2007 .

[23]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[24]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[25]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[26]  S. Marfia Micro–macro analysis of shape memory alloy composites , 2005 .

[27]  David Ryckelynck,et al.  Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables , 2010 .

[28]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[29]  Felix Fritzen,et al.  Reduced basis hybrid computational homogenization based on a mixed incremental formulation , 2013 .

[30]  P. Franciosi,et al.  Multi-laminate plastic-strain organization for non-uniform TFA modeling of poly-crystal regularized plastic flow , 2008 .

[31]  Pierre Suquet,et al.  Extension of the Nonuniform Transformation Field Analysis to linear viscoelastic composites in the presence of aging and swelling , 2014 .

[32]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[33]  Christian Miehe,et al.  A multi-field incremental variational framework for gradient-extended standard dissipative solids , 2011 .

[34]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[35]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[36]  Thomas Böhlke,et al.  Reduced basis homogenization of viscoelastic composites , 2013 .

[37]  P. Franciosi,et al.  Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis within a regularized Schmid law , 2007 .

[38]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[39]  George J. Dvorak,et al.  The modeling of inelastic composite materials with the transformation field analysis , 1994 .

[40]  Christian Miehe,et al.  Strain‐driven homogenization of inelastic microstructures and composites based on an incremental variational formulation , 2002 .

[41]  Pierre Suquet,et al.  Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .

[42]  Sonia Marfia,et al.  A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field , 2013 .

[43]  Christian Miehe,et al.  Computational homogenization in dissipative electro-mechanics of functional materials , 2013 .

[44]  E. Sacco,et al.  Cosserat model for periodic masonry deduced by nonlinear homogenization , 2010 .

[45]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[47]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[48]  Sonia Marfia,et al.  Multiscale damage contact-friction model for periodic masonry walls , 2012 .

[49]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[50]  Jean-Louis Chaboche,et al.  On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites , 2005 .

[51]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .