Mathematical Methods for Modeling Chemical Reaction Networks

Cancer’s cellular behavior is driven by alterations in the processes that cells use to sense and respond to diverse stimuli. Underlying these processes are a series of chemical processes (enzyme-substrate, protein-protein, etc.). Here we introduce a set of mathematical techniques for describing and characterizing these processes.

[1]  R. Jackson,et al.  General mass action kinetics , 1972 .

[2]  David Angeli,et al.  Combinatorial approaches to Hopf bifurcations in systems of interacting elements , 2013, 1301.7076.

[3]  David F. Anderson,et al.  A Proof of the Global Attractor Conjecture in the Single Linkage Class Case , 2011, SIAM J. Appl. Math..

[4]  Maya Mincheva,et al.  Graph-theoretic methods for the analysis of chemical and biochemical networks. II. Oscillations in networks with delays , 2007, Journal of mathematical biology.

[5]  Maya Mincheva,et al.  Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models , 2007, Journal of mathematical biology.

[6]  Fedor Nazarov,et al.  Persistence and Permanence of Mass-Action and Power-Law Dynamical Systems , 2010, SIAM J. Appl. Math..

[7]  M. Feinberg,et al.  Understanding bistability in complex enzyme-driven reaction networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[9]  Anca Marginean,et al.  CoNtRol: an open source framework for the analysis of chemical reaction networks , 2014, Bioinform..

[10]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[11]  Casian Pantea,et al.  On the Persistence and Global Stability of Mass-Action Systems , 2011, SIAM J. Math. Anal..

[12]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K D Watenpaugh,et al.  The Cyclin-dependent Kinases cdk2 and cdk5 Act by a Random, Anticooperative Kinetic Mechanism* , 2001, The Journal of Biological Chemistry.

[14]  Murad Banaji,et al.  Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements , 2009, 0903.1190.

[15]  Eduardo Sontag,et al.  A Petri net approach to the study of persistence in chemical reaction networks. , 2006, Mathematical biosciences.

[16]  Ezra Miller,et al.  A Geometric Approach to the Global Attractor Conjecture , 2013, SIAM J. Appl. Dyn. Syst..

[17]  M. Feinberg Complex balancing in general kinetic systems , 1972 .

[18]  Bernd Sturmfels,et al.  Siphons in Chemical Reaction Networks , 2009, Bulletin of mathematical biology.

[19]  Murad Banaji,et al.  Some Results on Injectivity and Multistationarity in Chemical Reaction Networks , 2013, SIAM J. Appl. Dyn. Syst..