Lower bounds on the maximal number of rational points on curves over finite fields

. For a given genus g ≥ 1 , we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over F q . As a consequence of Katz–Sarnak theory, we first get for any given g > 0 , any ε > 0 and all q large enough, the existence of a curve of genus g over F q with at least 1 + q + (2 g − ε ) √ q rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form 1 + q + 1 . 71 √ q valid for g ≥ 3 and odd q ≥ 11 . Finally, explicit constructions of towers of curves improve this result, with a bound of the form 1 + q + 4 √ q − 32 valid for all g ≥ 2 and for all q .

[1]  Peter Beelen A survey on recursive towers and Ihara's constant , 2022, 2203.03310.

[2]  Christophe Ritzenthaler,et al.  Spanning the isogeny class of a power of an elliptic curve , 2021, Math. Comput..

[3]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[4]  Jermey Miller,et al.  Representation stability, secondary stability, and polynomial functors. , 2019, 1910.05574.

[5]  Ivan Pogildiakov On the linear bounds on genera of pointless hyperelliptic curves , 2017, 1703.08312.

[6]  D. Petersen Cohomology of local systems on the moduli of principally polarized abelian surfaces , 2013, 1310.2508.

[7]  On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius , 2014, 1506.06482.

[8]  Jaap Top,et al.  Twists of genus three curves over finite fields , 2010 .

[9]  Andrew V. Sutherland Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..

[10]  Andrew V. Sutherland,et al.  Hyperelliptic curves, L-polynomials, and random matrices , 2008, 0803.4462.

[11]  Jonas Bergstrom Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves , 2006, math/0611813.

[12]  Chris Hall Big symplectic or orthogonal monodromy modulo $\ell$ , 2006, math/0608718.

[13]  R. Pries,et al.  The integral monodromy of hyperelliptic and trielliptic curves , 2006, math/0608038.

[14]  Everett W. Howe,et al.  Curves of every genus with many points, II: Asymptotically good families , 2002, Duke Mathematical Journal.

[15]  Mireille Fouquet,et al.  Isogeny Volcanoes and the SEA Algorithm , 2002, ANTS.

[16]  More Points Than Expected on Curves over Finite Field Extensions , 2001 .

[17]  Nicholas M. Katz,et al.  Random matrices, Frobenius eigenvalues, and monodromy , 1998 .

[18]  Everett W. Howe,et al.  Large torsion subgroups of split Jacobians of curves of genus two or three , 1998, math/9809210.

[19]  D. Kohel Endomorphism rings of elliptic curves over finite fields , 1996 .

[20]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[21]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[22]  Marcel van der Vlugt,et al.  Supersingular Curves of Genus 2 over Finite Fields of Characteristic 2 , 1992 .

[23]  G. Faltings Hodge-tate structures and modular forms , 1987 .

[24]  Jean-Pierre Serre,et al.  Nombres de points des courbes algébriques sur F ... , 1983 .

[25]  P. Deligne,et al.  Formes modulaires et représentations e -adiques , 1969 .

[26]  Jean-Pierre Serre,et al.  Représentations linéaires des groupes finis , 1967 .

[27]  S. Lang,et al.  Abelian varieties over finite fields , 2005 .

[28]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[29]  C. Siegel,et al.  Uber Die Analytische Theorie Der Quadratischen Formen III , 1935 .