Doubly-Generalized LDPC Codes: Stability Bound Over the BEC

The iterative decoding threshold of low-density parity-check (LDPC) codes over the binary erasure channel (BEC) fulfills an upper bound depending only on the variable and check nodes with minimum distance 2. This bound is a consequence of the stability condition, and is here referred to as stability bound. In this paper, a stability bound over the BEC is developed for doubly-generalized LDPC codes, where variable and check nodes can be generic linear block codes, assuming maximum a posteriori erasure correction at each node. It is proved that also in this generalized context the bound depends only on the variable and check component codes with minimum distance 2. A condition is also developed, namely, the derivative matching condition, under which the bound is achieved with equality. The stability bound leads to consider single parity-check codes used as variable nodes as an appealing option to overcome common problems created by generalized check nodes.

[1]  Marc P. C. Fossorier,et al.  Doubly Generalized LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[2]  R. Storn,et al.  Design of efficient erasure codes with differential evolution , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[3]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[4]  Enrico Paolini,et al.  Iterative decoding methods based on low-density graphs , 2007 .

[5]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[6]  Jinghu Chen,et al.  A hybrid coding scheme for the Gilbert-Elliott channel , 2006, IEEE Transactions on Communications.

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[9]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[10]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[11]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[12]  Jinghu Chen,et al.  A Hybrid Coding Scheme for the Gilbert-Elliott Channel , 2006, IEEE Trans. Commun..

[13]  Guosen Yue,et al.  Low-rate generalized low-density parity-check codes with hadamard constraints , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[14]  Marco Chiani,et al.  Generalized and Doubly Generalized LDPC Codes With Random Component Codes for the Binary Erasure Channel , 2010, IEEE Transactions on Information Theory.

[15]  M. Chiani,et al.  On the Growth Rate of Irregular GLDPC Codes Weight Distribution , 2008, 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications.

[16]  Marc P. C. Fossorier,et al.  Doubly Generalized LDPC Codes over the AWGN Channel , 2009, IEEE Transactions on Communications.

[17]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[18]  Marc P. C. Fossorier,et al.  CTH08-2: EXIT Chart Analysis for Doubly Generalized LDPC Codes , 2006, IEEE Globecom 2006.

[19]  Tor Helleseth,et al.  On the information function of an error-correcting code , 1997, IEEE Trans. Inf. Theory.

[20]  M. Shokrollahi,et al.  Capacity-achieving sequences , 2001 .

[21]  Nenad Miladinovic,et al.  Generalized LDPC codes and generalized stopping sets , 2008, IEEE Transactions on Communications.

[22]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[23]  William E. Ryan,et al.  Quasi-cyclic generalized ldpc codes with low error floors , 2007, IEEE Transactions on Communications.

[24]  Li Ping,et al.  Generalized Low-Density Parity-Check Codes Based on Hadamard Constraints , 2007, IEEE Transactions on Information Theory.

[25]  Nenad Miladinovic,et al.  Generalized LDPC codes with Reed-Solomon and BCH codes as component codes for binary channels , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[26]  Jean-Pierre Tillich The average weight distribution of Tanner code ensembles and a way to modify them to improve their weight distribution , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[27]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[28]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[29]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.