An O(n3L) potential reduction algorithm for linear programming

AbstractWe describe a primal-dual potential function for linear programming: $$\phi (x,s) = \rho \ln (x^T s) - \sum\limits_{j = 1}^n {\ln (x_j s_j )} $$ whereρ⩾ n, x is the primal variable, ands is the dual-slack variable. As a result, we develop an interior point algorithm seeking reductions in the potential function with $$\rho = n + \sqrt n $$ . Neither tracing the central path nor using the projective transformation, the algorithm converges to the optimal solution set in $$O(\sqrt n L)$$ iterations and uses O(n3L) total arithmetic operations. We also suggest a practical approach to implementing the algorithm.

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[3]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[4]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[5]  Earl R. Barnes,et al.  A variation on Karmarkar’s algorithm for solving linear programming problems , 1986, Math. Program..

[6]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[7]  Clyde L. Monma,et al.  Computational experience with a dual affine variant of Karmarkar's method for linear programming , 1987 .

[8]  K. Kortanek,et al.  Convergence results and numerical experiments on a linear programming hybrid algorithm , 1987 .

[9]  Masakazu Kojima,et al.  Recovering optimal dual solutions in Karmarkar's polynomial algorithm for linear programming , 1987, Math. Program..

[10]  David F. Shanno,et al.  Computing Karmarkar projections quickly , 1988, Math. Program..

[11]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[12]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[13]  C. C. Gonzaga,et al.  An Algorithm for Solving Linear Programming Problems in O(n 3 L) Operations , 1989 .

[14]  D. Bayer,et al.  The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories , 1989 .

[15]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[16]  Clyde L. Monma,et al.  An Implementation of a Primal-Dual Interior Point Method for Linear Programming , 1989, INFORMS J. Comput..

[17]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[18]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[19]  Nimrod Megiddo,et al.  Boundary Behavior of Interior Point Algorithms in Linear Programming , 1989, Math. Oper. Res..

[20]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[21]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[22]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[23]  Sanjay Mehrotra,et al.  An Algorithm for Convex Quadratic Programming That Requires O(n3.5L) Arithmetic Operations , 1990, Math. Oper. Res..

[24]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1990, Math. Program..

[25]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[26]  Michael J. Todd,et al.  Containing and shrinking ellipsoids in the path-following algorithm , 1990, Math. Program..

[27]  Donald Goldfarb,et al.  An O(n3L) primal interior point algorithm for convex quadratic programming , 1991, Math. Program..

[28]  Clóvis C. Gonzaga,et al.  Polynomial affine algorithms for linear programming , 1990, Math. Program..