Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation
暂无分享,去创建一个
[1] H. Wackernagel,et al. Mapping temperature using kriging with external drift: Theory and an example from scotland , 1994 .
[2] Alex B. McBratney,et al. Comparison of several spatial prediction methods for soil pH , 1987 .
[3] Jasper A. Vrugt,et al. High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .
[4] R. Reese. Geostatistics for Environmental Scientists , 2001 .
[5] J. R. Wallis,et al. An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .
[6] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[7] Johan Alexander Huisman,et al. Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion , 2010 .
[8] George Kuczera,et al. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .
[9] A. McBratney,et al. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging , 1995 .
[10] Budiman Minasny,et al. Mapping continuous depth functions of soil carbon storage and available water capacity , 2009 .
[11] Anthony N. Pettitt,et al. Sampling Designs for Estimating Spatial Variance Components , 1993 .
[12] W. Bouten,et al. Validity of First-Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models , 2002 .
[13] R. Lark,et al. Geostatistics for Environmental Scientists , 2001 .
[14] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[15] J. Gallant,et al. A multiresolution index of valley bottom flatness for mapping depositional areas , 2003 .
[16] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[17] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[18] D. Higdon,et al. Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .
[19] A. Lawson,et al. Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling. , 2009, Environmental science & technology.
[20] R. Larka,et al. Fitting a linear model of coregionalization for soil properties using simulated annealing , 2002 .
[21] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[22] R. M. Lark,et al. Estimating Variogram Uncertainty , 2004 .
[23] S. Sorooshian,et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .
[24] Cajo J. F. ter Braak,et al. Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..
[25] R. Lark,et al. On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E‐BLUP) with REML , 2006 .
[26] Cajo J. F. ter Braak,et al. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..
[28] B. Minasny,et al. The Matérn function as a general model for soil variograms , 2005 .
[29] B. Minasny,et al. Spatial prediction of soil properties using EBLUP with the Matérn covariance function , 2007 .
[30] A. Raftery,et al. How Many Iterations in the Gibbs Sampler , 1991 .
[31] N. Cressie,et al. Mean squared prediction error in the spatial linear model with estimated covariance parameters , 1992 .
[32] R. Lark,et al. Model‐based analysis using REML for inference from systematically sampled data on soil , 2004 .
[33] Cajo J. F. ter Braak,et al. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .
[34] O. F. Christensen. Monte Carlo Maximum Likelihood in Model-Based Geostatistics , 2004 .
[35] P. Diggle,et al. Model‐based geostatistics , 2007 .
[36] Hao Zhang. On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.
[37] R. M. Lark,et al. The Matérn variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys , 2007 .
[38] Peter J. Diggle,et al. geoR and geoRglm: Software for Model-Based Geostatistics , 2003 .
[39] R. M. Lark,et al. A comparison of some robust estimators of the variogram for use in soil survey , 2000 .
[40] J. Vrugt,et al. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .
[41] A. Papritz,et al. An Empirical Comparison of Kriging Methods for Nonlinear Spatial Point Prediction , 2002 .
[42] M. Stein,et al. A Bayesian analysis of kriging , 1993 .
[43] K. Mardia,et al. Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .