Water permeability in polymeric membranes, Part I

A new semi-empirical model for the pure water permeability in polymeric membranes for pressure-driven membrane separation processes is presented. The proposed new model is based on a combination of two well-known models, the solution diffusion (SD) and the pore flow (PF). The new model, the SDPF, assumes that water transfer across the membrane is jointly carried out by diffusion and pore flow mechanisms. This model may be useful to explain the effects of membrane micro-structural parameters and water physical properties on the permeability. This model further incorporates two empirical correlations for the operational conditions of the trans-membrane hydraulic pressure difference and the temperature. The SDPF model permeability function is to be regarded as the upper reference limit for the membrane permeability when using aqueous solutions as feed, as described in Part II of this work.

[1]  Gunnar Eigil Jonsson,et al.  Water and solute transport through cellulose acetate reverse osmosis membranes , 1975 .

[2]  Shyam S. Sablani,et al.  Concentration polarization in ultrafiltration and reverse osmosis: a critical review , 2001 .

[3]  T. Matsuura,et al.  Reverse osmosis separation of single and mixed alcohols in aqueous solutions using porous cellulose acetate membranes , 1974 .

[4]  S. Nakao,et al.  The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes , 1997 .

[5]  A. Mujumdar,et al.  Handbook of Food and Bioprocess Modeling Techniques , 2006 .

[6]  P. J. Moss,et al.  Fluid Mechanics and Transfer Processes , 1985 .

[7]  Christopher Bellona,et al.  Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications , 2006 .

[8]  A. Mohammad,et al.  Characterisation of nanofiltration membranes using atomic force microscopy , 2005 .

[9]  T. Miyasaka,et al.  Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model , 2007 .

[10]  K. Košutić,et al.  Porosity of some commercial reverse osmosis and nanofiltration polyamide thin-film composite membranes , 2000 .

[11]  M. Mazid,et al.  Mechanisms of Transport through Reverse Osmosis Membranes , 1984 .

[12]  Shoji Kimura,et al.  Analysis of data in reverse osmosis with porous cellulose acetate membranes used , 1967 .

[13]  Kim Dam-Johansen,et al.  Characterization of microporous membranes for use in membrane contactors , 1997 .

[14]  Darren D. Sun,et al.  Characterization and reduction of membrane fouling during nanofiltration of semiconductor indium phosphide (InP) wastewater , 2005 .

[15]  A. Fane,et al.  Fouling effects on rejection in the membrane filtration of natural waters , 2000 .

[16]  Ulrich Merten,et al.  Desalination by Reverse Osmosis , 1966 .

[17]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[18]  A. Yaroshchuk Solution-diffusion-imperfection model revised , 1995 .

[19]  L. B. Ticknor On the Permeation of Cellophane Membranes by Diffusion , 1958 .

[20]  V. Dananić,et al.  FT30 membranes of characterized porosities in the reverse osmosis organics removal from aqueous solutions , 1997 .

[21]  Nidal Hilal,et al.  CHARACTERISATION OF NANOFILTRATION MEMBRANES FOR PREDICTIVE PURPOSES - USE OF SALTS, UNCHARGED SOLUTES AND ATOMIC FORCE MICROSCOPY , 1997 .

[22]  D. Cahill,et al.  Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry , 2006 .

[23]  Eric M.V. Hoek,et al.  Modeling concentration polarization in reverse osmosis processes , 2005 .

[24]  Viriato Semiao,et al.  The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall , 2002 .

[25]  N. Hilal,et al.  Characterization and retention of UF membranes using PEG, HS and polyelectrolytes , 2007 .

[26]  M. L. White,et al.  THE PERMEABILITY OF AN ACRYLAMIDE POLYMER GEL , 1960 .

[27]  J. R. Alvarez,et al.  Mass transfer correlations in membrane extraction: Analysis of Wilson-plot methodology , 1998 .

[28]  A. Yaroshchuk The role of imperfections in the solute transfer in nanofiltration , 2004 .

[29]  N. Lakshminarayanaiah,et al.  Transport phenomena in membranes , 1969 .

[30]  Gary Amy,et al.  Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. , 2004, Water research.

[31]  S. Chellam,et al.  Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters , 2003 .

[32]  V. Freger,et al.  Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: Correlation to rejection , 2006 .

[33]  W. Richard Bowen,et al.  Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion , 2000 .

[34]  R. L. Riley,et al.  Transport properties of cellulose acetate osmotic membranes , 1965 .

[35]  S. Sourirajan,et al.  Reverse osmosis/ultrafiltration process principles , 1985 .

[36]  Jong-In Dong,et al.  Preparation of ceramic membrane and application to the crossflow microfiltration of soluble waste oil , 2002 .

[37]  Francisco A. Riera,et al.  A combination of serial resistances and concentration polarization models along the membrane in ultrafiltration of pectin and albumin solutions , 2007 .

[38]  Wen Wang Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells. , 2007, Journal of biomechanical engineering.

[39]  P. Carman Fluid flow through granular beds , 1997 .

[40]  V. Lobo Electrolyte solutions : literature data on thermodynamic and transport properties , 1981 .

[41]  Mass Transfer: Membrane Processes , 2006 .

[42]  J. V. Hoff,et al.  The role of osmotic pressure in the analogy between solutions and gases , 1995 .

[43]  Sunando DasGupta,et al.  Prediction of mass transfer coefficient with suction for turbulent flow in cross flow ultrafiltration , 1999 .

[44]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[45]  Yi-Chang Chong,et al.  Modeling of mass transport of aqueous solutions of multi-solute organics through reverse osmosis membranes in case of solute–membrane affinity , 2005 .

[46]  Adel O. Sharif,et al.  A new theoretical approach to estimate the specific energy consumption of reverse osmosis and other pressure-driven liquid-phase membrane processes , 2009 .

[47]  Björn Sivik,et al.  Concentration polarization and fouling , 1980 .

[48]  N. Xu,et al.  Modeling of relationship between water permeability and microstructure parameters of ceramic membranes , 2006 .

[49]  Uri Lachish,et al.  Osmosis and thermodynamics , 2007 .

[50]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[51]  R. Baker Membrane Technology and Applications , 1999 .

[52]  W. Gill,et al.  REVIEW OF REVERSE OSMOSIS MEMBRANES AND TRANSPORT MODELS , 1981 .

[53]  A. Haute,et al.  The use of direct osmosis tests as complementary experiments to determine the water and salt permeabilities of reinforced cellulose acetate membranes , 1978 .

[54]  Zagabathuni Venkata Panchakshari Murthy,et al.  Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model , 1997 .

[55]  C. Neuzil,et al.  Groundwater in Geologic Processes , 1998 .

[56]  D. Dolar,et al.  On experimental parameters characterizing the reverse osmosis and nanofiltration membranes¿ active layer , 2006 .

[57]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[58]  Jaeweon Cho,et al.  Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes , 2004 .

[59]  H. Neomagus,et al.  Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal , 2005 .

[60]  R. Skalak,et al.  THE HISTORY OF POISEUILLE'S LAW , 1993 .

[61]  K. Ebert,et al.  A transport model for organophilic nanofiltration , 2006 .

[62]  M. Hafsi,et al.  Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification , 2008 .

[63]  Mika Mänttäri,et al.  NF270, a new membrane having promising characteristics and being suitable for treatment of dilute effluents from the paper industry , 2004 .

[64]  Chao Yang,et al.  Preparation and application in oil–water separation of ZrO2/α-Al2O3 MF membrane , 1998 .

[65]  Walter Hayduk,et al.  Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions , 1974 .