LES of HCCI combustion of iso-octane/air in a flat-piston rapid compression machine

[1]  Wai Tong Chung,et al.  Combustion machine learning: Principles, progress and prospects , 2022, Progress in Energy and Combustion Science.

[2]  H. Im,et al.  Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations , 2020, Combustion and Flame.

[3]  Krishna C. Bavandla,et al.  Numerical Simulation of a Controlled Trajectory Rapid Compression Machine , 2020 .

[4]  Wai Tong Chung,et al.  Examination of diesel spray combustion in supercritical ambient fluid using large-eddy simulations , 2020, International Journal of Engine Research.

[5]  Matthias Ihme,et al.  Efficient time-stepping techniques for simulating turbulent reactive flows with stiff chemistry , 2019, Comput. Phys. Commun..

[6]  A. Claverie,et al.  HCCI and SICI combustion modes analysis with simultaneous PLIF imaging of formaldehyde and high-speed chemiluminescence in a rapid compression machine , 2019, Combustion and Flame.

[7]  Nathan J. Quinlan,et al.  Simulation of turbulent flow in a rapid compression machine: Large Eddy Simulation and computationally efficient alternatives for the design of ignition delay time experiments , 2018, Fuel.

[8]  Margaret S. Wooldridge,et al.  Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena , 2017 .

[9]  Matthias Ihme,et al.  An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows , 2017, J. Comput. Phys..

[10]  Moez Ben Houidi,et al.  Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities: Impact on combustion regimes and negative temperature coefficient behavior , 2016 .

[11]  Matthias Ihme,et al.  Ignition regimes in rapid compression machines , 2015 .

[12]  Andrew B. Mansfield,et al.  A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations , 2015 .

[13]  Marc Bellenoue,et al.  Experimental analysis of propagation regimes during the autoignition of a fully premixed methane–air mixture in the presence of temperature inhomogeneities , 2012 .

[14]  L. Vervisch,et al.  Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature , 2012 .

[15]  Matthias Ihme,et al.  On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures , 2012 .

[16]  Tianfeng Lu,et al.  Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study , 2011 .

[17]  P. Moin,et al.  Unstructured Large Eddy Simulation for Prediction of Noise Issued from Turbulent Jets in Various Configurations , 2011 .

[18]  Tianfeng Lu,et al.  Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis , 2010, Journal of Fluid Mechanics.

[19]  Mingfa Yao,et al.  Progress and recent trends in homogeneous charge compression ignition (HCCI) engines , 2009 .

[20]  William J. Pitz,et al.  Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine , 2009 .

[21]  S. Scott Goldsborough,et al.  A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region , 2009 .

[22]  N. Peters,et al.  Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation , 2009 .

[23]  Chih-Jen Sung,et al.  Computational fluid dynamics modeling of hydrogen ignition in a rapid compression machine , 2008 .

[24]  Marc Bellenoue,et al.  Experimental and Numerical Study of the Influence of Temperature Heterogeneities on Self-Ignition Process of Methane-Air Mixtures in a Rapid Compression Machine , 2008 .

[25]  Marcos Chaos,et al.  A high-temperature chemical kinetic model for primary reference fuels , 2007 .

[26]  Chih-Jen Sung,et al.  Aerodynamics inside a rapid compression machine , 2006 .

[27]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[28]  Shigeyuki Tanaka,et al.  A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine , 2003 .

[29]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[30]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[31]  Y. Zeldovich,et al.  Regime classification of an exothermic reaction with nonuniform initial conditions , 1980 .

[32]  S. Goldsborough,et al.  CFD simulations of Rapid Compression Machines using detailed chemistry: Impact of multi-dimensional effects on the auto-ignition of the iso-octane , 2017 .

[33]  Tianfeng Lu,et al.  A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions , 2013 .

[34]  Guillaume Legros,et al.  An Experimental Investigation of the Turbulence Effect on the Combustion Propagation in a Rapid Compression Machine , 2009 .

[35]  Hong G. Im,et al.  The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture , 2005 .