Biological shape characterization for automatic image recognition and diagnosis of protozoan parasites of the genus Eimeria

We describe an approach of automatic feature extraction for shape characterization of seven distinct species of Eimeria, a protozoan parasite of domestic fowl. We used digital images of oocysts, a round-shaped stage presenting inter-specific variability. Three groups of features were used: curvature characterization, size and symmetry, and internal structure quantification. Species discrimination was performed with a Bayesian classifier using Gaussian distribution. A database comprising 3891 micrographs was constructed and samples of each species were employed for the training process. The classifier presented an overall correct classification of 85.75%. Finally, we implemented a real-time diagnostic tool through a web interface, providing a remote diagnosis front-end.

[1]  J. Mattsson,et al.  Development of a diagnostic PCR assay for the detection and discrimination of four pathogenic .Eimeria species of the chicken. , 1998, Avian pathology : journal of the W.V.P.A.

[2]  A. Gruber,et al.  A multiplex PCR assay for the simultaneous detection and discrimination of the seven Eimeria species that infect domestic fowl , 2003, Parasitology.

[3]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[4]  Luciano da Fontoura Costa,et al.  A texture approach to leukocyte recognition , 2004, Real Time Imaging.

[5]  Dorin Comaniciu,et al.  Image-guided decision support system for pathology , 1999, Machine Vision and Applications.

[6]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[7]  A Daugschies,et al.  Interactive classification of porcine Eimeria spp. by computer-assisted image analysis. , 1999, Veterinary parasitology.

[8]  Roberto Cipolla,et al.  Affine integral invariants for extracting symmetry axes , 1997, Image Vis. Comput..

[9]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[10]  Y Yeshurun,et al.  Quantification of local symmetry: application to texture discrimination. , 1994, Spatial vision.

[11]  David G. Stork,et al.  Pattern Classification , 1973 .

[12]  Vito Di Gesù,et al.  Kernel Based Symmetry Measure , 2005, ICIAP.

[13]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[14]  David A. Clausi,et al.  Preserving boundaries for image texture segmentation using grey level co-occurring probabilities , 2006, Pattern Recognit..

[15]  Hagit Hel-Or,et al.  A measure of symmetry based on shape similarity , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[17]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[18]  Suresh D. Pillai,et al.  Identification of Cryptosporidium parvum Oocysts by an Artificial Neural Network Approach , 2002, Applied and Environmental Microbiology.

[19]  Hayit Greenspan,et al.  Automatic identification of bacterial types using statistical imaging methods , 2004 .

[20]  Ian T. Young,et al.  An Analysis Technique for Biological Shape. I , 1974, Inf. Control..

[21]  A Uggla,et al.  PCR identification of chicken Eimeria: a simplified read-out. , 1999, Avian pathology : journal of the W.V.P.A.

[22]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[23]  Xi Long,et al.  Effective automatic recognition of cultured cells in bright field images using fisher's linear discriminant preprocessing , 2005, Image Vis. Comput..

[24]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[25]  Roberto Marcondes Cesar Junior,et al.  Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques , 1996, Pattern Recognit..

[26]  A Daugschies,et al.  Differentiation of two Oesophagostomum spp. from pigs, O. dentatum and O. quadrispinulatum, by computer-assisted image analysis of fourth-stage larvae. , 1999, Parasitology international.

[27]  Vito Di Gesù,et al.  Shape-Based Features for Cat Ganglion Retinal Cells Classification , 2002, Real Time Imaging.

[28]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[29]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[30]  Michael H. F. Wilkinson,et al.  Shape representation and recognition through morphological curvature scale spaces , 2006, IEEE Transactions on Image Processing.

[31]  C Sommer Quantitative characterization of texture used for identification of eggs of bovine parasitic nematodes. , 1998, Journal of helminthology.

[32]  J Kucera,et al.  Differentiation of species of Eimeria from the fowl using a computerized image-analysis system. , 1991, Folia parasitologica.

[33]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[34]  L. Riggs Curvature as a Feature of Pattern Vision , 1973, Science.

[35]  C C Norton,et al.  A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. , 1976, Folia veterinaria Latina.

[36]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Hee Chan Kim,et al.  Automatic identification of human helminth eggs on microscopic fecal specimens using digital image processing and an artificial neural network , 2001, IEEE Transactions on Biomedical Engineering.

[38]  Luciano da Fontoura Costa,et al.  Biological shape analysis by digital curvature , 2004, Pattern Recognit..

[39]  Jake K. Aggarwal,et al.  Supervised parametric and non-parametric classification of chromosome images , 2005, Pattern Recognit..

[40]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  A. Daugschies,et al.  Differentiation of porcine Eimeria spp. by morphologic algorithms. , 1999, Veterinary parasitology.

[42]  Bruno A. Olshausen,et al.  Vision and the Coding of Natural Images , 2000, American Scientist.

[43]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  C Sommer Quantitative characterization, classification and reconstruction of oocyst shapes of Eimeria species from cattle. , 1998, Parasitology.

[45]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[46]  P A Liberator,et al.  Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. , 1997, The Journal of parasitology.

[47]  Luís Augusto Consularo,et al.  Automatic feature selection for biological shape classification in /spl Sigma/ynergos , 1998, Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237).