An Adaptive Finite Volume Scheme for Solving Nonlinear Diffusion Equations in Image Processing
暂无分享,去创建一个
[1] Eberhard Bänsch,et al. Adaptivity in 3D image processing , 2001 .
[2] Martin Rumpf,et al. Adaptive Projection Operators in Multiresolution Scientific Visualization , 1998, IEEE Trans. Vis. Comput. Graph..
[3] K. Mikula,et al. A coarsening finite element strategy in image selective smoothing , 1997 .
[4] Karol Mikula,et al. Slowed Anisotropic Diffusion , 1997, Scale-Space.
[5] Lionel Moisan,et al. Affine plane curve evolution: a fully consistent scheme , 1998, IEEE Trans. Image Process..
[6] J. Kacur,et al. Slow and fast diffusion effects in image processing , 2001 .
[7] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Max A. Viergever,et al. Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..
[9] Alessandro Sarti,et al. Numerical solution of parabolic equations related to level set formulation of mean curvature flow , 1998 .
[10] E. Bender. Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .
[11] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[12] Karol Mikula,et al. Solution of nonlinearly curvature driven evolution of plane curves , 1999 .
[13] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[14] Alessandro Sarti,et al. Nonlinear Multiscale Analysis of 3D Echocardiographic Sequences , 1999, IEEE Trans. Medical Imaging.
[15] Satyanad Kichenassamy,et al. The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..
[16] P. Lions. AXIOMATIC DERIVATION OF IMAGE PROCESSING MODELS , 1994 .
[17] Mark Nitzberg,et al. Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[18] Luis Alvarez,et al. Formalization and computational aspects of image analysis , 1994, Acta Numerica.
[19] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[20] Karol Mikula,et al. Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing , 2001, Numerische Mathematik.
[21] G. Sapiro,et al. On affine plane curve evolution , 1994 .
[22] K. Mikula,et al. Adaptivity in 3 D image processing , 2001 .
[23] Eberhard Bänsch,et al. Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..
[24] S. Patankar. Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.
[25] Karol Mikula,et al. Solution of nonlinear curvature driven evolution of plane convex curves , 1997 .
[26] Martin Rumpf,et al. An Adaptive Finite Element Method for Large Scale Image Processing , 1999, J. Vis. Commun. Image Represent..
[27] Baba C. Vemuri,et al. Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[28] J. Kacur,et al. Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .