An Adaptive Finite Volume Scheme for Solving Nonlinear Diffusion Equations in Image Processing

We propose the coarsening strategy for the finite volume computational method given by K. Mikula and N. Ramarosy (Numer. Math.89, 2001, 561?590) for the numerical solution of the (modified in the sense of F. Catte et al. (SIAM J. Numer. Anal.29, 1992, 182?193)) Perona?Malik nonlinear image selective smoothing equation (called anisotropic diffusion in image processing). The adaptive aproach is directly at hand because a solution tends to be flat in large subregions of the image, and thus it is not necessary to consider the same fine resolution of computations in the whole spatial domain. This access reduces computational effort, because the coarsening of the computational grid rapidly reduces the number of unknowns in the linear systems to be solved at discrete scale steps of the method.

[1]  Eberhard Bänsch,et al.  Adaptivity in 3D image processing , 2001 .

[2]  Martin Rumpf,et al.  Adaptive Projection Operators in Multiresolution Scientific Visualization , 1998, IEEE Trans. Vis. Comput. Graph..

[3]  K. Mikula,et al.  A coarsening finite element strategy in image selective smoothing , 1997 .

[4]  Karol Mikula,et al.  Slowed Anisotropic Diffusion , 1997, Scale-Space.

[5]  Lionel Moisan,et al.  Affine plane curve evolution: a fully consistent scheme , 1998, IEEE Trans. Image Process..

[6]  J. Kacur,et al.  Slow and fast diffusion effects in image processing , 2001 .

[7]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[9]  Alessandro Sarti,et al.  Numerical solution of parabolic equations related to level set formulation of mean curvature flow , 1998 .

[10]  E. Bender Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .

[11]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[12]  Karol Mikula,et al.  Solution of nonlinearly curvature driven evolution of plane curves , 1999 .

[13]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[14]  Alessandro Sarti,et al.  Nonlinear Multiscale Analysis of 3D Echocardiographic Sequences , 1999, IEEE Trans. Medical Imaging.

[15]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[16]  P. Lions AXIOMATIC DERIVATION OF IMAGE PROCESSING MODELS , 1994 .

[17]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[19]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[20]  Karol Mikula,et al.  Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing , 2001, Numerische Mathematik.

[21]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[22]  K. Mikula,et al.  Adaptivity in 3 D image processing , 2001 .

[23]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[24]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[25]  Karol Mikula,et al.  Solution of nonlinear curvature driven evolution of plane convex curves , 1997 .

[26]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 1999, J. Vis. Commun. Image Represent..

[27]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  J. Kacur,et al.  Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .