Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach

DOI: 10.2514/1.52476 This paper concerns the application of the homotopic approach, which solves the fuel-optimal problem of lowthrust trajectory by starting from the related and easier energy-optimal problem. To this end, some effective techniques are presented to reduce the computational time and increase the probability of finding the globally optimalsolution.First,theoptimalcontrolproblemismadehomogeneoustotheLagrangemultipliersbymultiplying the performance index by a positive unknown factor. Hence, normalization is applicable to restrict the unknown multipliersonaunithypersphere.Second,theswitchingfunction’s first-andsecond-orderderivativeswithrespectto time are derived to detect switching. The switching detection is embedded in the fourth-order Runge–Kutta algorithm with fixed step size to ensure integration accuracy for bang-bang control. Third, combined with the techniques of normalization and switching detection, the particle swarm optimization with well-chosen parameters considerably increases the probability of finding the approximate initial values of the globally optimal solution. Moreover, intermediate gravity assist, which brings complex inner constraints, is considered. To determine the approximate gravity assist date, analytical formulas are presented to evaluate the minimal maneuver impulse based on the results of Lambert problems. The first-order necessary conditions for gravity assist constraints are derived analytically.Theoptimalsolutioncanberapidlyobtainedbyapplyingthetechniquespresentedtosolvetheshooting function. The unknowns are far less than with direct methods, and the computational effort is also far lower. Two examples of fuel-optimal rendezvous problems from the Earth directly to Venus and from the Earth to Jupiter via Mars gravity assist are given to substantiate the perfect efficiency of these techniques.

[1]  A. Morselli,et al.  High order optimal feedback control of space trajectories with bounded control , 2014 .

[2]  Lorenzo Casalino,et al.  Optimal Low-Thrust Escape Trajectories Using Gravity Assist , 1999 .

[3]  Bion L. Pierson,et al.  Optimal low-thrust three-dimensional Earth-moon trajectories , 1995 .

[4]  Bruce A. Conway,et al.  Particle Swarm Optimization Applied to Space Trajectories , 2010 .

[5]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  Lorenzo Casalino,et al.  Cooperative evolutionary algorithm for space trajectory optimization , 2009 .

[8]  Pierre Martinon,et al.  Using switching detection and variational equations for the shooting method , 2007 .

[9]  Hexi Baoyin,et al.  A survey on orbital dynamics and navigation of asteroid missions , 2014 .

[10]  Craig Kluever,et al.  Low-Thrust Interplanetary Orbit Transfers Using Hybrid Trajectory Optimization Method with Multiple Shooting , 2004 .

[11]  Thomas Haberkorn,et al.  Low thrust minimum-fuel orbital transfer: a homotopic approach , 2004 .

[12]  Jean Albert Kechichian,et al.  Optimal Low-Earth-Orbit-Geostationary-Earth-Orbit Intermediate Acceleration Orbit Transfer , 1997 .

[13]  E. Trélat,et al.  Singular Arcs in the Generalized Goddard’s Problem , 2007, math/0703911.

[14]  Cesar A. Ocampo,et al.  Indirect Optimization of Two-Dimensional Finite Burning Interplanetary Transfers Including Spiral Dynamics , 2008 .

[15]  S. R. Vadali,et al.  Using Low-Thrust Exhaust-Modulated Propulsion Fuel-Optimal Planar Earth-Mars Trajectories , 2000 .

[16]  E. Fehlberg Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .

[17]  P. Cui,et al.  Solution space research for interplanetary trajectory , 2013 .

[18]  Anastassios E. Petropoulos,et al.  Design and Optimization of Low-Thrust Trajectories with Gravity Assists , 2003 .

[19]  Ryan P. Russell,et al.  Primer Vector Theory Applied to Global Low-Thrust Trade Studies , 2006 .

[20]  Alessandro Antonio Quarta,et al.  Trajectory Design with Hybrid Low-Thrust Propulsion System , 2007 .

[21]  S. Vadali,et al.  Optimal Solar Sail Trajectory Analysis for Interstellar Missions , 2012 .

[22]  David G. Hull,et al.  Optimal Control Theory for Applications , 2003 .

[23]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[24]  R. Epenoy,et al.  New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation , 2002 .

[25]  James M. Longuski,et al.  Preliminary Design of Nuclear Electric Propulsion Missions to the Outer Planets , 2004 .

[26]  Jin Zhang,et al.  Survey of orbital dynamics and control of space rendezvous , 2014 .

[27]  Peng Zhang,et al.  Low-thrust Trajectory Design for Halo-to-halo Transfer between the Sun-Earth and Earth-Moon systems , 2013 .

[28]  Bruce A. Conway,et al.  Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .

[29]  S. Vadali,et al.  Three-dimensional time Optimal Multi-reversal Orbit by Using Solar Sailing , 2013 .

[30]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[31]  Srinivas R. Vadali,et al.  Fuel-Optimal, Low-Thrust, Three-Dimensional Earth-Mars Trajectories , 2001 .

[32]  Junfeng Li,et al.  Pseudospectral Methods for Trajectory Optimization with Interior Point Constraints: Verification and Applications , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[33]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[34]  Jon Andrew Sims Delta-V gravity-assist trajectory design: Theory and practice , 1996 .

[35]  Lorenzo Casalino,et al.  Indirect optimization of low-thrust capture trajectories , 2006 .

[36]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[37]  Hexi Baoyin,et al.  A low-thrust transfer between the Earth–Moon and Sun–Earth systems based on invariant manifolds , 2013 .

[38]  J. Frédéric Bonnans,et al.  Numerical Study of Optimal Trajectories with Singular Arcs for an Ariane 5 Launcher , 2009 .

[39]  Richard Epenoy,et al.  Minimum-Fuel Deployment for Spacecraft Formations via Optimal Control , 2008 .

[40]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[41]  Lorenzo Casalino,et al.  Genetic Algorithm and Indirect Method Coupling for Low-Thrust Trajectory Optimization , 2006 .

[42]  Jun ' ichiro Asteroid Rendezvous of HAYABUSA Explorer Using Microwave Discharge Ion Engines , 2005 .

[43]  Fanghua Jiang,et al.  Time-optimal rendezvous transfer trajectory for restricted cone-angle range solar sails , 2014 .