Engineered surface Bloch waves in graphene-based hyperbolic metamaterials.

A kind of tunable hyperbolic metamaterial (HMM) based on the graphene-dielectric layered structure at near-infrared frequencies is presented, and the engineered surface Bloch waves between graphene-based HMM and isotropic medium are investigated. Our calculations demonstrate that the frequency and frequency range of surface Bloch waves existence can be tuned by varying the Fermi energy of graphene sheets via electrostatic biasing. Moreover, we show that the frequency range of surface Bloch waves existence can be broadened by decreasing the thickness of the dielectric in the graphene-dielectric layered structure or by increasing the layer number of graphene sheets.

[1]  P. Yeh,et al.  Electromagnetic propagation in periodic stratified media. I. General theory , 1977 .

[2]  M. Belić,et al.  Engineered surface waves in hyperbolic metamaterials. , 2013, Optics express.

[3]  P. Yeh,et al.  Optical surface waves in periodic layered media , 1978 .

[4]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[5]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[6]  S. Jian,et al.  Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. , 2013, Optics express.

[7]  Ivan Mukhin,et al.  Hyperbolic metamaterials based on multilayer graphene structures , 2012, 1211.5117.

[8]  Hans Peter Herzig,et al.  Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves , 2010 .

[9]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[10]  E. Narimanov,et al.  Control of absorption with hyperbolic metamaterials , 2012 .

[11]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[12]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[13]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[14]  M. Liscidini,et al.  Demonstration of surface enhanced Raman scattering in purely dielectric structures via bloch surface waves , 2013, CLEO: 2013.

[15]  Leonid A. Melnikov,et al.  Perfect absorption in graphene multilayers , 2013 .

[16]  Akhlesh Lakhtakia,et al.  Surface electromagnetic waves: A review , 2011 .

[17]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[18]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[19]  Weijing Kong,et al.  Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave. , 2012, Optics express.

[20]  E. Narimanov,et al.  Bulk photonic metamaterial with hyperbolic dispersion , 2008, 0809.1028.

[21]  Z. Jacob,et al.  Controlling spontaneous emission with metamaterials. , 2010, Optics letters.

[22]  Y. Kivshar,et al.  Surface Bloch waves in metamaterial and metal-dielectric superlattices , 2009, 0906.0404.

[23]  Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. , 2012, Optics letters.

[24]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[25]  Filippo Capolino,et al.  Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. , 2013, Optics express.

[26]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[27]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[28]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[29]  L. Dominici,et al.  Experimental determination of the sensitivity of Bloch surface waves based sensors. , 2010, Optics express.

[30]  T. Benyattou,et al.  Bragg surface wave device based on porous silicon and its application for sensing , 2007 .

[31]  Lin Chen,et al.  Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. , 2013, Optics express.

[32]  John E. Sipe,et al.  Enhancement of diffraction for biosensing applications via Bloch surface waves , 2007 .

[33]  Elisa Spinozzi,et al.  Terahertz active spatial filtering through optically tunable hyperbolic metamaterials. , 2012, Optics letters.

[34]  Svend-Age Biehs,et al.  Hyperbolic metamaterials as an analog of a blackbody in the near field. , 2011, Physical review letters.

[35]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[36]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[37]  Bo E. Sernelius,et al.  Surface modes in physics , 2001 .

[38]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[39]  K. V. Sreekanth,et al.  Negative refraction in graphene-based hyperbolic metamaterials , 2013 .

[40]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.