Fault-tolerant conversion between the Steane and Reed-Muller quantum codes.

Steane's 7-qubit quantum error-correcting code admits a set of fault-tolerant gates that generate the Clifford group, which in itself is not universal for quantum computation. The 15-qubit Reed-Muller code also does not admit a universal fault-tolerant gate set but possesses fault-tolerant T and control-control-Z gates. Combined with the Clifford group, either of these two gates generates a universal set. Here, we combine these two features by demonstrating how to fault-tolerantly convert between these two codes, providing a new method to realize universal fault-tolerant quantum computation. One interpretation of our result is that both codes correspond to the same subsystem code in different gauges. Our scheme extends to the entire family of quantum Reed-Muller codes.

[1]  H. Bombin Clifford gates by code deformation , 2010, 1006.5260.

[2]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[3]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[4]  Andrew J. Landahl,et al.  Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic , 2013, 1302.3240.

[5]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[6]  David Poulin,et al.  Universal topological phase of two-dimensional stabilizer codes , 2011, 1103.4606.

[7]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[8]  E. Knill,et al.  Accuracy threshold for quantum computation , 1996 .

[9]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[10]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[11]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  H. Bombin Optimal Transversal Gates under Geometric Constraints , 2013 .

[14]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[16]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[17]  Andrew M. Steane Quantum Reed-Muller codes , 1999, IEEE Trans. Inf. Theory.

[18]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[19]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[20]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[21]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[22]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[23]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.