Feasibility Analysis of the Use of Binary Genetic Algorithms as Importance Samplers Application to a 1-D DC Resistivity Inverse Problem

DC resistivity inverse problems are ill-posed. For the Vertical Electrical Sounding method the acceptable solutions lie in very narrow elongated-shape regions in the model space. To characterize this ensemble of solutions is a central question. In a Bayesian framework this issue is solved adopting as solution the so-called model posterior probability distribution. However, due to the nonlinearity of the problem, this distribution is not explicitly known, or it is difficult to calculate. Therefore, algorithms that efficiently sample the model space according to it (importance sampling) are very desirable. The main goal of this paper is to numerically explore the performance of binary genetic algorithms as posterior importance sampling strategies. Their behavior will be firstly analyzed using 2D synthetic posterior test functions bearing the relevant properties of the real geo-electrical inverse problem. The conclusions will be again checked through the histogram reconstruction of parameters in a synthetic VES case, and eventually, in a real, higher dimensional, sea-water coastal intrusion problem, by comparing the results with those obtained with a theoretically correct Metropolis-Hasting importance sampler (simulated annealing without cooling). Percentile curves are introduced as an effective tool for risk assessment. We show that binary genetic algorithms perform well under very general assumptions. When the roulette wheel is the selection method used, mutation is over 10%, and the algorithm does not incorporate elitism. The results do not depend on the values of the remaining tuning parameters. Finally, to improve the efficiency of the sampling strategy, we introduce a binary genetic algorithm with oriented search space. This is done with the help of linearization of the forward operator and singular value decomposition around the maximum posterior estimate. It is shown, also, that the logarithmic model parameterization is adequate for this task.

[1]  Dwight P. Sipler,et al.  Combined incoherent scatter radar and Fabry‐Perot interferometer measurements of frictional heating effects over Millstone Hill during March 7–10, 1989 , 1991 .

[2]  A. Curtis,et al.  Prior information, sampling distributions, and the curse of dimensionality , 2001 .

[3]  D. Ghosh THE APPLICATION OF LINEAR FILTER THEORY TO THE ' DIRECT INTERPRETATION OF GEOELECTRICAL RESISTIVITY SOUNDING MEASUREMENTS * , 1971 .

[4]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[5]  Roel Snieder,et al.  The Anatomy of Inverse Problems , 2000 .

[6]  Juan Luis Fernández-Martínez,et al.  A Posteriori Inference of Model Parameters in a Geophysical Inverse Problem Using GA , 2004 .

[7]  Klaus Mosegaard,et al.  Resolution analysis of general inverse problems through inverse Monte Carlo sampling , 1998 .

[8]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[9]  Mrinal K. Sen,et al.  2-D resistivity inversion using spline parameterization and simulated annealing , 1996 .

[10]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[11]  M. Sambridge,et al.  Monte Carlo analysis of inverse problems , 2002 .

[12]  Christoph Schwarzbach,et al.  Two‐dimensional inversion of direct current resistivity data using a parallel, multi‐objective genetic algorithm , 2005 .

[13]  H. Johansen A MAN/COMPUTER INTERPRETATION SYSTEM FOR RESISTIVITY SOUNDINGS OVER A HORIZONTALLY STRAFIFIED EARTH* , 1977 .

[14]  R. Maillet THE FUNDAMENTAL EQUATIONS OF ELECTRICAL PROSPECTING , 1947 .

[15]  D. S. Parasnis Prospeccion geoelectrica en corriente continua: Ernesto Orellana. Paraninfo, Madrid, 1972 , 1976 .

[16]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[17]  S. Stefanesco,et al.  Sur la distribution électrique potentielle autour d'une prise de terre ponctuelle dans un terrain à couches horizontales, homogènes et isotropes , 1930 .

[18]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[19]  C. Pekeris Direct method of interpretation in resistivity prospecting , 1940 .

[20]  Roel Snieder,et al.  To Bayes or not to Bayes , 1997 .

[21]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[23]  Mrinal K. Sen,et al.  Nonlinear inversion of resistivity sounding data , 1993 .

[24]  A. Tarantola,et al.  Monte Carlo estimation and resolution analysis of seismic background velocities , 1991 .

[25]  J. Scales,et al.  Resolution of seismic waveform inversion: Bayes versus Occam , 1997 .

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  C. Chapman,et al.  Automatic 1-D waveform inversion of marine seismic refraction data , 1988 .

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  D. Ghosh,et al.  Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth , 1971 .

[30]  Alberto Malinverno,et al.  A Bayesian criterion for simplicity in inverse problem parametrization , 2000 .

[31]  Fernández Álvarez,et al.  Análisis y resolución numérica de un problema inverso en geofísica medioambiental. Aplicación al caso de los sondeos eléctricos verticales , 2004 .

[32]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .