$C^\ast$-blocks and crossed products for classical $p$-adic groups
暂无分享,去创建一个
[1] Alexandre Afgoustidis,et al. Continuity of the Mackey–Higson bijection , 2019, 1901.00144.
[2] M. Solleveld. On Completions of Hecke Algebras , 2016, Progress in Mathematics.
[3] Graham A. Niblo,et al. Stratified Langlands duality in the $A_n$ tower , 2016, Journal of Noncommutative Geometry.
[4] M. Solleveld. Topological K-theory of affine Hecke algebras , 2016, Annals of K-Theory.
[5] P. Baum,et al. Conjectures about p-adic groups and their noncommutative geometry , 2015, 1508.02837.
[6] P. Baum,et al. Geometric structure in smooth dual and local Langlands conjecture , 2014 .
[7] Kwangho Choiy,et al. Invariance of R-groups between p-adic inner forms of quasi-split classical groups , 2013, 1310.2625.
[8] T. Kamran,et al. K‐theory and the connection index , 2012, 1202.3866.
[9] E. Opdam,et al. Extensions of tempered representations , 2011, 1105.3802.
[10] S. Echterhoff,et al. Structure and K-theory of crossed products by proper actions , 2010, 1012.5214.
[11] M. Solleveld. On the classification of irreducible representations of affine Hecke algebras with unequal parameters , 2010, 1008.0177.
[12] J. Waldspurger. Une formule intégrale reliée à la conjecture locale de Gross–Prasad , 2009, Compositio Mathematica.
[13] D. Renard. Représentations des groupes réductifs p-adiques , 2010 .
[14] Kuok Fai Chao,et al. Geometric structure in the tempered dual of SL(4) , 2006 .
[15] R. Plymen,et al. R-groups and geometric structure in the representation theory of SL(N) , 2006, math/0612273.
[16] L. Morris,et al. Level zero Hecke algebras and parabolic induction: The Siegel case for split classical groups , 2006 .
[17] F. Murnaghan,et al. LINEAR ALGEBRAIC GROUPS , 2005 .
[18] J. Waldspurger. LA FORMULE DE PLANCHEREL POUR LES GROUPES p-ADIQUES. D’APRÈS HARISH-CHANDRA , 2003, Journal of the Institute of Mathematics of Jussieu.
[19] Weighted Characters. Intertwining Operators and Residues , 2003 .
[20] F. Shahidi,et al. On the tempered spectrum of quasi-split classical groups , 1998 .
[21] R. Herb,et al. Some results on the admissible representations of non-connected reductive $p$-adic groups , 1995, math/9511216.
[22] D. Goldberg. $R$-groups and elliptic representations for unitary groups , 1995 .
[23] D. Goldberg. Reducibility of Induced Representations for SP(2N) and SO(N) , 1994 .
[24] D. Goldberg. R-groups and elliptic representations for SLn , 1994 .
[25] J. B. Prolla. On the Weierstrass-Stone Theorem , 1994 .
[26] J. Arthur. On elliptic tempered characters , 1993 .
[27] C. Bushnell,et al. The admissible dual of GL(N) via compact open subgroups , 1993 .
[28] F. Shahidi. Twisted endoscopy and reducibility of induced representations for $p$-adic groups , 1992 .
[29] R. Plymen,et al. Arithmetic aspect of operator algebras , 1991 .
[30] F. Shahidi. A proof of Langland’s conjecture on Plancherel measures; Complementary series of $p$-adic groups , 1990 .
[31] R. Plymen. Reduced C∗-algebra for reductive p-adic groups , 1990 .
[32] J. Arthur. Intertwining operators and residues I. Weighted characters , 1989 .
[33] R. Phillips. Intertwining Operators and Residues , 1989 .
[34] C. D. Keys. On the decomposition of reducible principal series representations of $p$-adic Chevalley groups. , 1982 .
[35] Gopal Prasad. Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits , 1982 .
[36] E. Stein,et al. Intertwining operators for semisimple groups, II , 1980 .
[37] M. Rieffel. Morita equivalence for operator algebras , 1980 .
[38] A. Silberger. The Knapp-Stein dimension theorem for $p$-adic groups , 1978 .