$C^\ast$-blocks and crossed products for classical $p$-adic groups

Let $G$ be a real or $p$-adic reductive group. We consider the tempered dual of $G$, and its connected components. For real groups, Wassermann proved in 1987, by noncommutative-geometric methods, that each connected component has a simple geometric structure which encodes the reducibility of induced representations. For $p$-adic groups, each connected component of the tempered dual comes with a compact torus equipped with a finite group action, and we prove that a version of Wassermann's theorem holds true under a certain geometric assumption on the structure of stabilizers for that action. We then focus on the case where $G$ is a quasi-split symplectic, orthogonal or unitary group, and explicitly determine the connected components for which the geometric assumption is satisfied.

[1]  Alexandre Afgoustidis,et al.  Continuity of the Mackey–Higson bijection , 2019, 1901.00144.

[2]  M. Solleveld On Completions of Hecke Algebras , 2016, Progress in Mathematics.

[3]  Graham A. Niblo,et al.  Stratified Langlands duality in the $A_n$ tower , 2016, Journal of Noncommutative Geometry.

[4]  M. Solleveld Topological K-theory of affine Hecke algebras , 2016, Annals of K-Theory.

[5]  P. Baum,et al.  Conjectures about p-adic groups and their noncommutative geometry , 2015, 1508.02837.

[6]  P. Baum,et al.  Geometric structure in smooth dual and local Langlands conjecture , 2014 .

[7]  Kwangho Choiy,et al.  Invariance of R-groups between p-adic inner forms of quasi-split classical groups , 2013, 1310.2625.

[8]  T. Kamran,et al.  K‐theory and the connection index , 2012, 1202.3866.

[9]  E. Opdam,et al.  Extensions of tempered representations , 2011, 1105.3802.

[10]  S. Echterhoff,et al.  Structure and K-theory of crossed products by proper actions , 2010, 1012.5214.

[11]  M. Solleveld On the classification of irreducible representations of affine Hecke algebras with unequal parameters , 2010, 1008.0177.

[12]  J. Waldspurger Une formule intégrale reliée à la conjecture locale de Gross–Prasad , 2009, Compositio Mathematica.

[13]  D. Renard Représentations des groupes réductifs p-adiques , 2010 .

[14]  Kuok Fai Chao,et al.  Geometric structure in the tempered dual of SL(4) , 2006 .

[15]  R. Plymen,et al.  R-groups and geometric structure in the representation theory of SL(N) , 2006, math/0612273.

[16]  L. Morris,et al.  Level zero Hecke algebras and parabolic induction: The Siegel case for split classical groups , 2006 .

[17]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[18]  J. Waldspurger LA FORMULE DE PLANCHEREL POUR LES GROUPES p-ADIQUES. D’APRÈS HARISH-CHANDRA , 2003, Journal of the Institute of Mathematics of Jussieu.

[19]  Weighted Characters Intertwining Operators and Residues , 2003 .

[20]  F. Shahidi,et al.  On the tempered spectrum of quasi-split classical groups , 1998 .

[21]  R. Herb,et al.  Some results on the admissible representations of non-connected reductive $p$-adic groups , 1995, math/9511216.

[22]  D. Goldberg $R$-groups and elliptic representations for unitary groups , 1995 .

[23]  D. Goldberg Reducibility of Induced Representations for SP(2N) and SO(N) , 1994 .

[24]  D. Goldberg R-groups and elliptic representations for SLn , 1994 .

[25]  J. B. Prolla On the Weierstrass-Stone Theorem , 1994 .

[26]  J. Arthur On elliptic tempered characters , 1993 .

[27]  C. Bushnell,et al.  The admissible dual of GL(N) via compact open subgroups , 1993 .

[28]  F. Shahidi Twisted endoscopy and reducibility of induced representations for $p$-adic groups , 1992 .

[29]  R. Plymen,et al.  Arithmetic aspect of operator algebras , 1991 .

[30]  F. Shahidi A proof of Langland’s conjecture on Plancherel measures; Complementary series of $p$-adic groups , 1990 .

[31]  R. Plymen Reduced C∗-algebra for reductive p-adic groups , 1990 .

[32]  J. Arthur Intertwining operators and residues I. Weighted characters , 1989 .

[33]  R. Phillips Intertwining Operators and Residues , 1989 .

[34]  C. D. Keys On the decomposition of reducible principal series representations of $p$-adic Chevalley groups. , 1982 .

[35]  Gopal Prasad Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits , 1982 .

[36]  E. Stein,et al.  Intertwining operators for semisimple groups, II , 1980 .

[37]  M. Rieffel Morita equivalence for operator algebras , 1980 .

[38]  A. Silberger The Knapp-Stein dimension theorem for $p$-adic groups , 1978 .