FORWARD-IN-TIME DIFFERENCING FOR FLUIDS: SIMULATION OF GEOPHYSICAL TURBULENCE

The Earth’s atmosphere and oceans are essentially incompressible, highly turbulent fluids. Herein, we demonstrate that nonoscillatory forward-in-time (NFT) methods can be efficiently utilized to accurately simulate a broad range of flows in these fluids. NFT methods contrast with the more traditional centered-in-time-and-space approach that underlies the bulk of computational experience in the meteorological community. We challenge the common misconception that NFT schemes are overly diffusive and therefore inadequate for high Reynolds number flow simulations, and document their numerous benefits. In particular, we show that, in the absence of an explicit subgrid-scale turbulence model, NFT methods offer means of implicit subgrid-scale modeling that can be quite effective in assuring a quality large-eddy-simulation of high Reynolds number flows. The latter is especially important where complications such as large span of scales, density stratification, planetary rotation, inhomogeneity of the lower boundary, etc., make explicit modeling of subgrid-scale motions difficult. Theoretical discussions are illustrated with examples of meteorological flows that address the range of applications from micro turbulence to climate.

[1]  Paul R. Woodward,et al.  Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows , 1994 .

[2]  Piotr K. Smolarkiewicz,et al.  On spurious vortical structures , 2001 .

[3]  Paul Linden,et al.  Molecular mixing in Rayleigh–Taylor instability , 1994, Journal of Fluid Mechanics.

[4]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[5]  F. Champagne The fine-scale structure of the turbulent velocity field , 1978, Journal of Fluid Mechanics.

[6]  L. Margolin,et al.  Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .

[7]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[8]  Jackson R. Herring,et al.  Development of enstrophy and spectra in numerical turbulence , 1993 .

[9]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[10]  Robert McDougall Kerr Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .

[11]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[12]  Joseph M. Prusa,et al.  Dynamic Grid Adaptation Using the MPDATA Scheme , 2002 .

[13]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[14]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[15]  R. Pielke,et al.  The forward-in-time upstream advection scheme:extension to higher orders , 1987 .

[16]  P. Mason,et al.  The Effects of Numerical Dissipation in Large Eddy Simulations , 2000 .

[17]  Kelvin K. Droegemeier,et al.  Application of Continuous Dynamic Grid Adaption Techniques to Meteorological Modeling. Part I: Basic Formulation and Accuracy , 1992 .

[18]  R. Garcia,et al.  Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing , 1996 .

[19]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[20]  Parviz Moin,et al.  Numerical and Physical Issues in Large Eddy Simulation of Turbulent Flows , 1998 .

[21]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[22]  Joe F. Thompson,et al.  Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies , 1974 .

[23]  J. Thuburn Dissipation and Cascades to Small Scales in Numerical Models Using a Shape-Preserving Advection Scheme , 1995 .

[24]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[25]  L. Margolin,et al.  Forward-in-time differencing for fluids: Nonhydrostatic modeling of fluid motions on a sphere , 1998 .

[26]  Stephen J. Thomas,et al.  The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .

[27]  Andreas Muschinski,et al.  A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES , 1996, Journal of Fluid Mechanics.

[28]  P. Mason Large‐eddy simulation: A critical review of the technique , 1994 .

[29]  T. Clark,et al.  Severe Downslope Windstorm Calculations in Two and Three Spatial Dimensions Using Anelastic Interactive Grid Nesting: A Possible Mechanism for Gustiness , 1984 .

[30]  L. Margolin,et al.  A rationale for implicit turbulence modelling , 2001 .

[31]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[32]  Jay P. Boris,et al.  Computing Turbulent Shear Flows — A Convenient Conspiracy , 1993 .

[33]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[34]  Branko Kosovic,et al.  Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers , 1997, Journal of Fluid Mechanics.

[35]  P. Smolarkiewicz,et al.  The multidimensional positive definite advection transport algorithm: further development and applications , 1986 .

[36]  Ulrich Schumann,et al.  Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.

[37]  J. Prusa,et al.  Simulations of gravity wave induced turbulence using 512 PE Cray T3E , 2001 .

[38]  J. Deardorff,et al.  Sub-Grid-Scale Turbulence Modeling , 1985 .

[39]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[40]  Georgiy L. Stenchikov,et al.  A Uniform- and Variable-Resolution Stretched-Grid GCM Dynamical Core with Realistic Orography , 2000 .

[41]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[42]  F. T. M. Nieuwstadt,et al.  DIRECT AND LARGE-EDDY SIMULATION OF FREE CONVECTION , 1990 .

[43]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[44]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[45]  Piotr K. Smolarkiewicz,et al.  Eddy resolving simulations of turbulent solar convection , 2002 .

[46]  Piotr K. Smolarkiewicz,et al.  A class of monotone interpolation schemes , 1992 .

[47]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .

[48]  Steven A. Orszag,et al.  CFD: Progress and problems , 2000 .

[49]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .