On the Time Splitting Spectral Method for the Complex Ginzburg-Landau Equation in the Large Time and Space Scale Limit
暂无分享,去创建一个
[1] John Whitehead,et al. Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.
[2] Lee A. Segel,et al. Distant side-walls cause slow amplitude modulation of cellular convection , 1969, Journal of Fluid Mechanics.
[3] Lee A. Segel,et al. Non-linear wave-number interaction in near-critical two-dimensional flows , 1971, Journal of Fluid Mechanics.
[4] John Whitehead,et al. Review of the Finite Bandwidth Concept , 1971 .
[5] D. Pathria,et al. Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .
[6] John C. Neu,et al. Vortices in complex scalar fields , 1990 .
[7] M. Cross,et al. Pattern formation outside of equilibrium , 1993 .
[8] Andrew M. Stuart,et al. Discrete Gevrey regularity attractors and uppers–semicontinuity for a finite difference approximation to the Ginzburg–Landau equation , 1995 .
[9] Thierry Colin,et al. Some singular limits for evolutionary Ginzburg–Landau equations , 1996 .
[10] Alessandro Torcini,et al. Studies of phase turbulence in the one-dimensional complex Ginzburg-Landau equation , 1996, chao-dyn/9608003.
[11] G. Lord. Attractors and Inertial Manifolds for Finite-Difference Approximations of the Complex Ginzburg--Landau Equation , 1997 .
[12] F. Lin. Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds , 1998 .
[13] Stefan C. Müller,et al. Evolution of spontaneous structures in dissipative continuous systems , 1998 .
[14] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[15] J. Xin,et al. On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .
[16] François Golse,et al. The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .
[17] Ansgar Jüngel,et al. A Nonstiff Euler Discretization of the Complex Ginzburg-Landau Equation in One Space Dimension , 2000, SIAM J. Numer. Anal..
[18] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[19] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[20] Arjen Doelman. UvA-DARE ( Digital Academic Repository ) Finite-dimensional models of the Ginzburg-Landau equation Doelman , 2002 .
[21] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[22] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[23] P. Markowich,et al. Numerical simulation of a generalized Zakharov system , 2004 .
[24] Chunxiong Zheng,et al. A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.
[25] Qiang Du,et al. Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation , 2007, European Journal of Applied Mathematics.
[26] Qiang Du,et al. The Dynamics and Interaction of Quantized Vortices in the Ginzburg-Landau-Schrödinger Equation , 2007, SIAM J. Appl. Math..
[27] Pierre Degond,et al. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..
[28] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..