A 3D shell-like approach using a natural neighbour meshless method: Isotropic and orthotropic thin structures

A three-dimensional shell-like approach for the analysis of composite thin plates and shells using a meshless method, the natural neighbour radial point interpolation method (NNRPIM), is presented. In the NNRPIM the nodal connectivity is enforced using the natural neighbour concept. The node-depending background mesh used in the numerical integration of the NNRPIM interpolation functions is entirely created from the unstructured nodal arrangement. The radial point interpolators are used to construct the NNRPIM interpolation functions, which possesses the delta Kronecker property, used in the Galerkin weak form. The novelty of this work lays on the development of a unique NNRPIM approach when 3D thin structures are considered. This new approach leads to remarkable results and it is extremely suitable to the composite structure problem. In order to demonstrate the effectiveness of the method the 3D shell-like NNRPIM analysis is used to solve several isotropic and orthotropic thin plates and shells problems.

[1]  R. M. Natal Jorge,et al.  Analysis of plates and laminates using the natural neighbour radial point interpolation method. , 2008 .

[2]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[3]  YuanTong Gu,et al.  MESHFREE METHODS AND THEIR COMPARISONS , 2005 .

[4]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[5]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[6]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[7]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[8]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[9]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[10]  J. Z. Zhu,et al.  The finite element method , 1977 .

[11]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[12]  A. J. M. Ferreira Progress on meshless methods , 2009 .

[13]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[14]  J. Ren,et al.  Exact solutions for laminated cylindrical shells in cylindrical bending , 1987 .

[15]  L. Traversoni Natural Neighbour Finite Elements , 1970 .

[16]  T. Kant,et al.  A HIGHER-ORDER FACET QUADRILATERAL COMPOSITE SHELL ELEMENT , 1997 .

[17]  Miguel Ángel Martínez,et al.  Overview and recent advances in natural neighbour galerkin methods , 2003 .

[18]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[19]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[20]  N. J. Pagano,et al.  Elastic Behavior of Multilayered Bidirectional Composites , 1972 .

[21]  R. Jorge,et al.  Analysis of 3D solids using the natural neighbour radial point interpolation method , 2007 .

[22]  J. Ren,et al.  Analysis of simply-supported laminated circular cylindrical shell roofs , 1989 .

[23]  Gui-Rong Liu,et al.  A point assembly method for stress analysis for two-dimensional solids , 2002 .

[24]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[25]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[26]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[27]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[28]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[29]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .