영역별 대역간 양방향 예측과 확장된 SPIHT를 이용한 다분광 화상데이터의 압축

본 논문에서는 웨이블릿 영역에서 각 부밴드에 대한 영역별 대역간 양방향 예측과 확장된 SPIHT (set partition in hierarchical trees)를 이용한 효율적인 인공위성 다분광 화상데이터의 압축 방법을 제안하였다. 이 방법에서는 가시광선 영역과 적외선 영역에서 다른 대역과 분광적 상관성이 큰 대역을 기준대역 (feature band)으로 각각 결정하고, 이 대역들에 대해 웨이블릿 변환 (wavelet transform, WT)을 행한 후 SPIHT를 행하여 부호화함으로써 대역내 (intraband) 중복성을 제거한다. 기준대역과 대역간 상관성이 큰 예측대역 (prediction band)들에 대해서는 웨이블릿 변환을 행한 후, 각 대역의 기저밴드의 대역별 특성을 이용하여 영역분류를 하고, 각 부밴드에 대한 영역별 대역간 양방향 예측 (classified interband bidirec- tional prediction)을 행함으로써 대역간 (interband) 중복성을 제거하여 압축 효율을 향상시킨다. 또한 확장된 SPIHT의 부호화 효율을 높이기 위해 예측오차의 최대값에 따라 재배열된 대역들에 대해 확장된 SPIHT를 행하여 예측오차를 부호화함으로써, 예측에 따른 오차를 보상하여 화질을 향상시킨다. 실제 다분광 화상데이터에 대한 모의 실험을 통하여 제안한 방법의 부호화 효율이 기존의 방법에 비하여 우수함을 확인하였다.