Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time

The reconstruction of the equilibrium of a plasma in a Tokamak is a free boundary problem described by the Grad-Shafranov equation in axisymmetric configuration. The right-hand side of this equation is a nonlinear source, which represents the toroidal component of the plasma current density. This paper deals with the identification of this nonlinearity source from experimental measurements in real time. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation. This is implemented in a software called Equinox with which several numerical experiments are conducted to explore the identification problem. It is shown that the identification of the profile of the averaged current density and of the safety factor as a function of the poloidal flux is very robust.

[1]  L. L. Lao,et al.  Separation of β̄p and ℓi in tokamaks of non-circular cross-section , 1985 .

[2]  G. Tonetti,et al.  Tokamak equilibrium reconstruction using Faraday rotation measurements , 1988 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Sergei Sharapov,et al.  Real-time identification of the current density profile in the JET tokamak: method and validation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[5]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[6]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[7]  David W. Swain,et al.  An efficient technique for magnetic analysis of non-circular, high-beta tokamak equilibria , 1982 .

[8]  J. Blum,et al.  An Inverse Problem in Plasma Physics: the Identification of the Current Density Profile in a Tokamak , 1996 .

[9]  V. D. Pustovitov,et al.  Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems , 2000 .

[10]  L. Zakharov,et al.  Equilibrium of a toroidal plasma with noncircular cross section , 1973 .

[11]  Bastiaan J. Braams,et al.  The interpretation of tokamak magnetic diagnostics , 1991 .

[12]  Per Christian Hansen,et al.  Regularization Tools Version 3.0 for Matlab 5.2 , 1999, Numerical Algorithms.

[13]  Jacques Blum,et al.  Problems and methods of self-consistent reconstruction of tokamak equilibrium profiles from magnetic and polarimetric measurements , 1990 .

[14]  A. S. Demidov,et al.  To the problem of the recovery of nonlinearities in equations of mathematical physics , 2009 .

[15]  J. P. Christiansen,et al.  Determination of current distribution in a tokamak , 1982 .

[16]  F. Saint-Laurent,et al.  Real time determination and control of the plasma localisation and internal inductance in Tore Supra , 2001 .

[17]  A S Demidov,et al.  An inverse problem originating from magnetohydrodynamics , 2004 .

[18]  Michael Vogelius,et al.  An inverse problem for the equation $\triangle u=-cu-d$ , 1994 .

[19]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[20]  J. B. Taylor,et al.  Degenerate toroidal magnetohydrodynamic equilibria and minimum B , 1986 .

[21]  J. L. Luxon,et al.  Magnetic analysis of non-circular cross-section tokamaks , 1982 .

[22]  L. Segal John , 2013, The Messianic Secret.

[23]  Sylvain Brémond,et al.  EQUINOX: A REAL-TIME EQUILIBRIUM CODE AND ITS VALIDATION AT JET , 2010 .

[24]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[25]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[26]  Elena Beretta,et al.  AN INVERSE PROBLEM ORIGINATING FROM MAGNETOHYDRODYNAMICS. III: DOMAINS WITH CORNERS OF ARBITRARY ANGLES , 1995 .

[27]  J. Lingertat,et al.  Local expansion method for fast plasma boundary identification in JET , 1993 .

[28]  J. I. Ramos,et al.  Numerical simulation and optimal control in plasma physics with applications to Tokamaks , 1990 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  E. Beretta,et al.  An inverse problem orginating from magnetohydrodynamics. II: the case of the Grad-Shafranov equation , 1992 .

[31]  Filippo Sartori,et al.  JET real-time object-oriented code for plasma boundary reconstruction , 2003 .

[32]  V. Shafranov,et al.  Determination of the parameters βI and li in a Tokamak for arbitrary shape of plasma pinch cross-section , 1971 .

[33]  W. Zwingmann,et al.  Equilibrium analysis of tokamak discharges with anisotropic pressure , 2001 .

[34]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[35]  F. M. Levinton,et al.  The Theory of Variances in Equilibrium Reconstruction , 2008 .

[36]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[37]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .