Large convex holes in random point sets

A convex hole (or empty convex polygon) of a point set P in the plane is a convex polygon with vertices in P, containing no points of P in its interior. Let R be a bounded convex region in the plane. We show that the expected number of vertices of the largest convex hole of a set of n random points chosen independently and uniformly over R is @Q(logn/(loglogn)), regardless of the shape of R.

[1]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[2]  Carlos M. Nicolas The Empty Hexagon Theorem , 2007, Discret. Comput. Geom..

[3]  Imre Bárány A note on Sylvester's four-point problem , 2001 .

[4]  Pavel Valtr,et al.  Planar point sets with a small number of empty convex polygons , 2004 .

[5]  I. Bárány,et al.  Longest convex chains , 2009, Random Struct. Algorithms.

[6]  V. A. Koshelev On the Erdös-Szekeres problem , 2007 .

[7]  Imre Bárány,et al.  Sylvester's question : The probability that n points are in convex position , 1999 .

[8]  Peter Borwein The Erdős—Szekeres Problem , 2002 .

[9]  Tobias Gerken Empty Convex Hexagons in Planar Point Sets , 2008, Discret. Comput. Geom..

[10]  J. Horton Sets with No Empty Convex 7-Gons , 1983, Canadian Mathematical Bulletin.

[11]  Heiko Harborth Konvexe Fünfecke in ebenen Punktmengen. , 1978 .

[12]  P. Valtr,et al.  Probability thatn random points are in convex position , 1995, Discret. Comput. Geom..

[13]  Oswin Aichholzer Empty ] [ colored ] k-gons-Recent results on some Erdős-Szekeres type problems , 2009 .

[14]  Christian Buchta The Exact Distribution of the Number of Vertices of a Random Convex Chain , 2006 .

[15]  Imre Bárány,et al.  Longest convex chains , 2009, Random Struct. Algorithms.

[16]  V. Soltan,et al.  The Erdos-Szekeres problem on points in convex position – a survey , 2000 .

[17]  I. Bárány,et al.  Empty Simplices in Euclidean Space , 1987, Canadian Mathematical Bulletin.

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  Pavel Valtr The probability thatn random points in a triangle are in convex position , 1996, Comb..

[20]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[21]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[22]  Mark H. Overmars Finding Sets of Points without Empty Convex 6-Gons , 2003, Discret. Comput. Geom..

[23]  G. Fejes Tóth PLANAR POINT SETS WITH A SMALL NUMBER OF EMPTY CONVEX POLYGONS , 2004 .