Proportional-Integral Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems

This chapter initially reviews observer theory as it was developed over the past few decades. The state observer and its order reduction including functional observer in connection to state feedback control design are briefly discussed. The robustness of observer-based controller design is also explored. The loss of robustness due to the inclusion of observer in optimal linear quadratic regulator (LQR) and its recovery procedure (LTR) are summarized. The subsequent development of new observer structures such as disturbance observer (DO), unknown input observer (UIO), and proportional-integral observer (PIO) for disturbance estimation and fault detection is highlighted. Throughout the chapter we concentrate mainly on important advantages of PI-observer. Finally, we consider the problem of designing a decentralized PI observer with prescribed degree of convergence for a set of interconnected systems. Under the assumption of linear interactions, we provide a direct design procedure for the PI observer which can effectively be used in disturbance estimation and observer-based control design enhancing the robustness properties. In this connection we also extend the results to the case of designing controllers that attenuate the disturbance while preserving the stability. It is shown that the design can be formulated in terms of LMI which efficiently solve the problem.

[1]  R. Kovacevic,et al.  Loop transfer recovery design with proportional integral observer based on H/sup /spl infin// optimal observation , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[2]  Wan Kyun Chung,et al.  Advanced disturbance observer design for mechanical positioning systems , 2003, IEEE Trans. Ind. Electron..

[3]  B. Shafai,et al.  Minimal order observer design for linear time varying multivariable systems , 1984, The 23rd IEEE Conference on Decision and Control.

[4]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[5]  Michael Athans A Tutorial on the LQG/LTR Method , 1986, 1986 American Control Conference.

[6]  R. Carroll,et al.  Design of a minimal-order observer for singular systems , 1987 .

[7]  G. Stein,et al.  Robustness with observers , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[8]  Mohamed Darouach Existence and design of functional observers for linear systems , 2000, IEEE Trans. Autom. Control..

[9]  Alessandro Astolfi,et al.  Design of Positive Linear Observers for Positive Linear Systems via Coordinate Transformations and Positive Realizations , 2008, SIAM J. Control. Optim..

[10]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[11]  Chia-Chi Tsui A new algorithm for the design of multifunctional observers , 1985, IEEE Transactions on Automatic Control.

[12]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[13]  M. Hou,et al.  Design of observers for linear systems with unknown inputs , 1992 .

[14]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[15]  P. Kudva,et al.  Observers for linear systems with unknown inputs , 1980 .

[16]  Tyrone Fernando,et al.  Time-Delay Systems: Design of Delay-Free and Low-Order Observers , 2010, IEEE Transactions on Automatic Control.

[17]  F. Fairman,et al.  A direct procedure for the design of single functional observers , 1981 .

[18]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[19]  M. Boutayeb,et al.  Design of observers for descriptor systems , 1995, IEEE Trans. Autom. Control..

[20]  Bahram Shafai,et al.  Robust decentralized PI observer for linear interconnected systems , 2011, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD).

[21]  Nan K. Loh,et al.  Observer design for time-varying systems , 1991 .

[22]  Bahram Shafai,et al.  Decentralized PI observer-based control of nonlinear interconnected systems with disturbance attenuation , 2011, Proceedings of the 2011 American Control Conference.

[23]  Bahram Shafai,et al.  Modified structures for loop transfer recovery design , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[24]  J. Stoustrup,et al.  LTR design of discrete-time proportional-integral observers , 1996, IEEE Trans. Autom. Control..

[25]  Peter C. Müller,et al.  Observer design for descriptor systems , 1999, IEEE Trans. Autom. Control..

[26]  B. Shafai,et al.  Design of single-functional observers for linear time-varying multivariable systems , 1989 .

[27]  Jochen Trumpf Observers for linear time-varying systems , 2007 .

[28]  Bahram Shafai,et al.  Robust PI observer design for linear time-delay systems , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[29]  Samir Kouro,et al.  Unidimensional Modulation Technique for Cascaded Multilevel Converters , 2009, IEEE Transactions on Industrial Electronics.

[30]  Saeid Nahavandi,et al.  Algorithms for designing reduced-order functional observers of linear systems , 2008 .

[31]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[32]  P. Kaboré,et al.  Disturbance attenuation using proportional integral observers , 2001 .

[33]  Ali Saberi,et al.  Loop Transfer Recovery: Analysis and Design , 1993 .

[34]  S. P. Linder,et al.  Proportional integral adaptive observer for parameter and disturbance estimations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  Frédéric Rotella,et al.  On Functional Observers for Linear Time-Varying Systems , 2013, IEEE Transactions on Automatic Control.

[36]  Uwe Helmke,et al.  Positive observers for linear positive systems, and their implications , 2011, Int. J. Control.

[37]  M. Saif,et al.  A novel approach to the design of unknown input observers , 1991 .

[38]  Bahram Shafai Parallel procedure for the design of observers in high-order multivariable systems , 1988 .

[39]  Mehrdad Saif,et al.  Decentralized state estimation in large-scale interconnected dynamical systems , 1992, Autom..

[40]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[41]  P. Müller,et al.  State estimation of dynamical systems with nonlinearities by using proportional-integral observer , 1995 .

[42]  Mihail M. Konstantinov,et al.  Computational methods for linear control systems , 1991 .

[43]  Ron J. Patton,et al.  An observer design for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[44]  A. Kumar,et al.  Delayless observers for systems with delay , 1986 .

[45]  M. Jamshidi Large-Scale Systems: Modeling, Control and Fuzzy Logic , 1996 .

[46]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[47]  C. T. Pi,et al.  Simultaneous disturbance attenuation and fault detection using proportional integral observers , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[48]  Bahram Shafai,et al.  LTR DESIGN OF PROPORTIONAL-INTEGRAL OBSERVERS , 1995 .

[49]  Ben M. Chen,et al.  Loop Transfer Recovery , 1993 .

[50]  H. Trinh,et al.  Functional Observers for Dynamical Systems , 2011 .

[51]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[52]  D. Luenberger An introduction to observers , 1971 .

[53]  Didier Georges,et al.  Robust fault diagnosis for linear descriptor systems using proportional integral observers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).