Multimodal Integration: Visual Cues Help Odor-Seeking Fruit Flies

Olfactory stimuli are uniquely devoid of directional information, so that multimodal cues are typically required for their localization. A clever new experimental paradigm with flying Drosophila has shown that accurate heading into an odor plume requires panoramic visual cues.

[1]  T. Baker,et al.  Optomotor regulation of ground velocity in moths during flight to sex pheromone at different heights , 1982 .

[2]  J. Kennedy,et al.  Pheromone-Regulated Anemotaxis in Flying Moths , 1974, Science.

[3]  H. Fadamiro,et al.  Flying Beetles Respond as Moths Predict: Optomotor Anemotaxis to Pheromone Plumes at Different Heights , 1998, Journal of Insect Behavior.

[4]  Causing a commotion , 2004, Nature.

[5]  N. Vickers Mechanisms of animal navigation in odor plumes. , 2000, The Biological bulletin.

[6]  E. Brodie CAUTION: NICHE CONSTRUCTION AHEAD1 , 2005 .

[7]  Wolfgang R Mukabana,et al.  Malaria Infection Increases Attractiveness of Humans to Mosquitoes , 2005, PLoS biology.

[8]  C. David,et al.  Optomotor control of speed and height by free-flying Drosophila. , 1979, The Journal of experimental biology.

[9]  R. Dudley,et al.  Directed aerial descent in canopy ants , 2005, Nature.

[10]  R. Cardé,et al.  Spatial and temporal structures of pheromone plumes in fields and forests , 2000 .

[11]  T. Baker,et al.  Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Ring T. Cardé,et al.  Strategies for recontacting a lost pheromone plume: casting and upwind flight in the male gypsy moth , 1994 .

[13]  Mark A. Frye,et al.  Crossmodal Visual Input for Odor Tracking during Fly Flight , 2008, Current Biology.

[14]  G. Gibson,et al.  Visually‐guided, upwind turning behaviour of free‐flying tsetse flies in odour‐laden wind: a wind‐tunnel study , 1989 .

[15]  William G. Eberhard,et al.  Spider manipulation by a wasp larva , 2000, Nature.

[16]  A. Ludlow,et al.  An analysis of anemotactic zigzagging flight in male moths stimulated by pheromone , 1978 .

[17]  T. Lefèvre,et al.  New Prospects for Research on Manipulation of Insect Vectors by Pathogens , 2006, PLoS pathogens.

[18]  R. Dawkins Extended Phenotype – But Not Too Extended. A Reply to Laland, Turner and Jablonka , 2004 .

[19]  Laurent Keller,et al.  Changing the world , 2003, Nature.

[20]  S. R. Farkas,et al.  Chemical Trail-Following by Flying Insects: A Mechanism for Orientation to a Distant Odor Source , 1972, Science.

[21]  Julian J. Dodson,et al.  Modification of the Rheotropic Behavior of Male Rainbow Trout (Salmo gairdneri) by Ovarian Fluid , 1979 .

[22]  R. Dudley,et al.  Parasite‐Induced Fruit Mimicry in a Tropical Canopy Ant , 2008, The American Naturalist.

[23]  P. Durand,et al.  Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? , 2002 .

[24]  Philip N. Sabes,et al.  Flexible strategies for sensory integration during motor planning , 2005, Nature Neuroscience.

[25]  H. Evans,et al.  Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems. II: The Camponotus (Formicinae) complex , 1982 .

[26]  R. Dawkins Parasites, desiderata lists and the paradox of the organism , 1990, Parasitology.

[27]  E. Newman,et al.  Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum. , 1981, Science.

[28]  A. Ludlow,et al.  Guidance system used in moth sex attraction , 1980, Nature.

[29]  J. Koella,et al.  The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  S. Yanoviak,et al.  Myrmeconema neotropicum n. g., n. sp., a new tetradonematid nematode parasitising South American populations of Cephalotes atratus (Hymenoptera: Formicidae), with the discovery of an apparent parasite-induced host morph , 2008, Systematic Parasitology.

[31]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .

[32]  F. J. Odling-Smee,et al.  Niche Construction: The Neglected Process in Evolution , 2003 .

[33]  Sachdev Quantum criticality: competing ground states in low dimensions , 2000, Science.

[34]  M. Srinivasan,et al.  Visual control of flight speed in honeybees , 2005, Journal of Experimental Biology.

[35]  Dylan G. Fischer,et al.  COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE EXTENDED PHENOTYPE , 2003 .

[36]  L. Buck,et al.  Combinatorial Receptor Codes for Odors , 1999, Cell.

[37]  Thomas C. Baker,et al.  Visual feedback in the control of pheromone-mediated flight ofHeliothis virescens males (Lepidoptera: Noctuidae) , 1994, Journal of Insect Behavior.

[38]  S. Adamo,et al.  Parasitic manipulation: where are we and where should we go? , 2005, Behavioural Processes.