Rare earth elements as a source of impurities in doped chalcogenide glasses

[1]  M. Churbanov,et al.  Comparison of 4.5–6 μm luminescent and lasing properties of rare earth dopants in chalcogenide glasses , 2022, Journal of Luminescence.

[2]  V. Plotnichenko,et al.  Continuous Tb-doped fiber laser emitting at ∼5.25 µm , 2022, Optics & Laser Technology.

[3]  V. Shiryaev,et al.  Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm , 2021 .

[4]  M. Frolov,et al.  Mid-infrared laser performance of Ce3+-doped selenide glass. , 2021, Optics express.

[5]  B. Stepanov,et al.  Transparent IR glass ceramics: Requirements for the dispersed structure and for the methods of its control , 2021, Journal of the European Ceramic Society.

[6]  V. Kozlovsky,et al.  Resonantly pumped Ce3+ mid-infrared lasing in selenide glass. , 2021, Optics letters.

[7]  M. F. Churbanov,et al.  Laser potential of Pr3+ doped chalcogenide glass in 5-6 μm spectral range , 2021 .

[8]  M. F. Churbanov,et al.  Cascade sensitization of mid-infrared Ce3+ luminescence by Dy3+ ions in selenide glass , 2021 .

[9]  Ravinder K. Jain,et al.  Fiber-based sources of coherent MIR radiation: key advances and future prospects (invited). , 2020, Optics express.

[10]  V. Shiryaev,et al.  Determination of Matrix Elements and Praseodymium in Ga–Ge–As–Se Glasses by Inductively Coupled Plasma–Atomic Emission Spectrometry , 2020, Journal of Analytical Chemistry.

[11]  V. G. Plotnichenko,et al.  First demonstration of ~ 5 µm laser action in terbium-doped selenide glass , 2020, Applied Physics B.

[12]  V. Nazabal,et al.  Dy3+ doped GaGeSbSe fiber long-wave infrared emission , 2020, Journal of Luminescence.

[13]  M. F. Churbanov,et al.  Preparation of REE-doped Ge-based chalcogenide glasses with low hydrogen impurity content , 2019 .

[14]  V. Shiryaev,et al.  Preparation of Ge20Se80 glasses with low hydrogen and oxygen impurities content for middle IR fiber optics , 2019, Journal of Non-Crystalline Solids.

[15]  M. F. Churbanov,et al.  Special pure Pr(3+) doped Ga3Ge31As18Se48 glass for active mid-IR optics , 2019, Journal of Luminescence.

[16]  A. Seddon,et al.  Comparative study of praseodymium additives in active selenide chalcogenide optical fibers , 2018, Optical Materials Express.

[17]  M. Churbanov,et al.  Behavior of Hydroxyl Groups in Quartz Glass during Heat Treatment in the Range 750–950°C , 2018, Inorganic Materials.

[18]  B. Bureau,et al.  Tb3+ doped Ga5Ge20Sb10Se65-xTex (x = 0-375) chalcogenide glasses and fibers for MWIR and LWIR emissions , 2018, Optical Materials Express.

[19]  Haitao Guo,et al.  Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 42 μm fiber laser , 2018, Optical Materials Express.

[20]  M. Churbanov,et al.  Arsenic-sulfide glasses with low content of hydrogen impurity for fiber optics , 2018 .

[21]  L. A. Ketkova,et al.  Preparation of high-purity Pr3+ doped Ge–As–Se–In–I glasses for active mid-infrared optics , 2016 .

[22]  Angela B. Seddon,et al.  Preparation of high purity glasses in the Ga–Ge–As–Se system , 2014 .

[23]  Slawomir Sujecki,et al.  Progress in rare-earth-doped mid-infrared fiber lasers. , 2010, Optics express.

[24]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[25]  Richard J. Curry,et al.  Transition-metal-doped chalcogenide glasses for broadband near-infrared sources , 2004, SPIE Security + Defence.

[26]  J. Nishii,et al.  Oxide impurity absorptions in Ge-Se-Te glass fibres , 1989 .

[27]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .