Topics in structure-preserving discretization*

In the last few decades the concepts of structure-preserving discretization, geometric integration and compatible discretizations have emerged as subfields in the numerical approximation of ordinary and partial differential equations. The article discusses certain selected topics within these areas; discretization techniques both in space and time are considered. Lie group integrators are discussed with particular focus on the application to partial differential equations, followed by a discussion of how time integrators can be designed to preserve first integrals in the differential equation using discrete gradients and discrete variational derivatives. Lie group integrators depend crucially on fast and structure-preserving algorithms for computing matrix exponentials. Preservation of domain symmetries is of particular interest in the application of Lie group integrators to PDEs. The equivariance of linear operators and Fourier transforms on non-commutative groups is used to construct fast structure-preserving algorithms for computing exponentials. The theory of Weyl groups is employed in the construction of high-order spectral element discretizations, based on multivariate Chebyshev polynomials on triangles, simplexes and simplicial complexes. The theory of mixed finite elements is developed in terms of special inverse systems of complexes of differential forms, where the inclusion of cells corresponds to pullback of forms. The theory covers, for instance, composite piecewise polynomial finite elements of variable order over polyhedral grids. Under natural algebraic and metric conditions, interpolators and smoothers are constructed, which commute with the exterior derivative and whose product is uniformly stable in Lebesgue spaces. As a consequence we obtain not only eigenpair approximation for the Hodge–Laplacian in mixed form, but also variants of Sobolev injections and translation estimates adapted to variational discretizations.

[1]  E. Celledoni Lie group methods , 2009 .

[2]  Snorre H. Christiansen,et al.  Foundations of Finite Element Methods for Wave Equations of Maxwell Type , 2009, Applied Wave Mathematics.

[3]  Einar M. Rønquist,et al.  Spectral and high order methods for partial differential equations : selected papers from the ICOSAHOM '09 conference, June 22-26, Trondheim, Norway , 2010 .

[4]  Stein Krogstad,et al.  Generalized polar coordinates on Lie groups and numerical integrators , 2009, Numerische Mathematik.

[5]  Rudolf Lidl,et al.  A class of orthogonal polynomials ink variables , 1982 .

[6]  Oswald Knoth,et al.  Multirate infinitesimal step methods for atmospheric flow simulation , 2009 .

[7]  Elena Celledoni,et al.  Semi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems , 2009, J. Sci. Comput..

[8]  Masaaki Sugihara,et al.  Conservative numerical schemes for the Ostrovsky equation , 2010, J. Comput. Appl. Math..

[9]  K. Georg,et al.  Exploiting Symmetry in Solving Linear Equations , 1992 .

[10]  Snorre H. Christiansen,et al.  On Constraint Preservation in Numerical Simulations of Yang-Mills Equations , 2006, SIAM J. Sci. Comput..

[11]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[12]  S. Blanes,et al.  Fourth-and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems , 2006 .

[13]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[14]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[15]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[16]  Masaaki Sugihara,et al.  Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method , 2002 .

[17]  L. Lopez,et al.  Applications of the Cayley approach in the numerical solution of matrix differential systems of quadratic groups , 2001 .

[18]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[19]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[21]  Snorre H. Christiansen Éléments finis mixtes minimaux sur les polyèdres , 2010 .

[22]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[23]  Brynjulf Owren,et al.  A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..

[24]  A. Fässler,et al.  Group Theoretical Methods and Their Applications , 1992 .

[25]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[26]  Daan Huybrechs,et al.  From high oscillation to rapid approximation V: the equilateral triangle , 2011 .

[27]  R. J. Beerends Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator , 1991 .

[28]  H. Whitney Geometric Integration Theory , 1957 .

[29]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[30]  André Well Sur les théorèmes de de Rham , 1952 .

[31]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[32]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[33]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[34]  Ilio Galligani,et al.  Mathematical Aspects of Finite Element Methods , 1977 .

[35]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[36]  E. Allgower,et al.  Exploiting symmetry in boundary element methods , 1992 .

[37]  D. Huybrechs On the Fourier extension of non-periodic functions , 2009 .

[38]  Masaaki Sugihara,et al.  Linearly Implicit Finite Difference Schemes Derived by the Discrete Variational Method (Numerical Soluti on of Partial Differential Equations and Related Topics) , 2000 .

[39]  Karen K. Uhlenbeck,et al.  Geometry and Quantum Field Theory , 1995 .

[40]  S. P. Nørsett An A-stable modification of the Adams-Bashforth methods , 1969 .

[41]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[42]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[43]  Daan Huybrechs,et al.  On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..

[44]  Snorre H. Christiansen,et al.  On the linearization of Regge calculus , 2011, Numerische Mathematik.

[45]  G. R. W. Quispel,et al.  Linearization-preserving self-adjoint and symplectic integrators , 2009 .

[46]  J. Schöberl,et al.  TANGENTIAL-DISPLACEMENT AND NORMAL–NORMAL-STRESS CONTINUOUS MIXED FINITE ELEMENTS FOR ELASTICITY , 2011 .

[47]  Kenneth H. Karlsen,et al.  Convergence of a mixed method for a semi-stationary compressible Stokes system , 2009, Math. Comput..

[48]  S. Christiansen,et al.  CONVERGENCE OF A CONSTRAINED FINITE ELEMENT DISCRETIZATION OF THE MAXWELL KLEIN GORDON EQUATION , 2011 .

[49]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[50]  Arne Marthinsen,et al.  Quadrature methods based on the Caylay transform , 2001 .

[51]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[52]  Brynjulf Owren,et al.  Preserving multiple first integrals by discrete gradients , 2010, 1011.0478.

[53]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[54]  R. Hiptmair,et al.  Acta Numerica 2002: Finite elements in computational electromagnetism , 2002 .

[55]  C. B. Shoemaker,et al.  Applications of finite groups. , 1961 .

[56]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[57]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[58]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[59]  D. Furihata,et al.  Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .

[60]  Arne Marthinsen,et al.  Norges Teknisk-naturvitenskapelige Universitet Integration Methods Based on Canonical Coordinates of the Second Kind Integration Methods Based on Canonical Coordinates of the Second Kind , 2022 .

[61]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[62]  Feng Kang,et al.  Volume-preserving algorithms for source-free dynamical systems , 1995 .

[63]  V. K. Patodi,et al.  Riemannian Structures and Triangulations of Manifold , 1976 .

[64]  Johannes Tausch,et al.  Numerical Exploitation of Equivariance , 1998 .

[65]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[66]  Gilbert Strang,et al.  Approximation in the finite element method , 1972 .

[67]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[68]  S. Christiansen A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .

[69]  Leszek F. Demkowicz,et al.  p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..

[70]  Elena Celledoni,et al.  Approximating the exponential from a Lie algebra to a Lie group , 2000, Math. Comput..

[71]  V. K. Patodi Riemannian Structures and Triangulations of Manifolds , 2010 .

[72]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[73]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .

[74]  Elena Celledoni,et al.  Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..

[75]  Luciano Lopez,et al.  The Cayley transform in the numerical solution of unitary differential systems , 1998, Adv. Comput. Math..

[76]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[77]  Daisuke Furihata,et al.  A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation , 2003 .

[78]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[79]  J. Lomont,et al.  Applications of finite groups , 1959 .

[80]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[81]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[82]  M. Liebeck,et al.  Representations and Characters of Groups , 1995 .

[83]  Panayot S. Vassilevski,et al.  Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..

[84]  R. Lidl,et al.  Tschebyscheffpolynome in mehreren Variablen. , 1975 .

[85]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[86]  Jan Mandel,et al.  An abstract theory for the domain reduction method , 2005, Computing.

[87]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[88]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[89]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[90]  Anthony Ralston,et al.  Mathematical Methods for Digital Computers , 1960 .

[91]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[92]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[93]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[94]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[95]  Krister Åhlander,et al.  Applications of the Generalized Fourier Transform in Numerical Linear Algebra , 2005 .

[96]  Yoshimasa Nakamura,et al.  New numerical integrator for the Stäckel system conserving the same number of constants of motion as the degree of freedom , 2006 .

[97]  Snorre H. Christiansen,et al.  Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension , 2007, Numerische Mathematik.

[98]  Donald Greenspan,et al.  Discrete mechanics—A general treatment , 1974 .

[99]  Ragnar Winther,et al.  On variational eigenvalue approximation of semidefinite operators , 2010, 1005.2059.

[100]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[101]  P. Crouch,et al.  Numerical integration of ordinary differential equations on manifolds , 1993 .

[102]  A. Iserles,et al.  Methods for the approximation of the matrix exponential in a Lie‐algebraic setting , 1999, math/9904122.

[103]  Snorre H. Christiansen,et al.  Smoothed projections in finite element exterior calculus , 2007, Math. Comput..

[104]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[105]  Takayasu Matsuo Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .

[106]  Antonella Zanna,et al.  Adjoint and Selfadjoint Lie-group Methods , 2001 .

[107]  K. William Morton The convection–diffusion Petrov–Galerkin story , 2010 .

[108]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[109]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[110]  Yuri A. Kuznetsov,et al.  Convergence analysis and error estimates for mixed finite element method on distorted meshes , 2005, J. Num. Math..

[111]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[112]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[113]  R. Bryant An introduction to Lie groups and symplectic geometry , 1995 .

[114]  Tom H. Koornwinder,et al.  Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III , 1974 .

[115]  H. Munthe-Kaas,et al.  On Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles , 2011 .

[116]  Tarmo Soomere,et al.  Applied Wave Mathematics - Selected Topics in Solids, Fluids, and Mathematical Methods , 2009, Applied Wave Mathematics.

[117]  D. Furihata,et al.  Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .

[118]  William Douglas Withers,et al.  Generalized Chebyshev polynomials associated with affine Weyl groups , 1988 .

[119]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[120]  Takayasu Matsuo,et al.  New conservative schemes with discrete variational derivatives for nonlinear wave equations , 2007 .

[121]  H. F. Baker,et al.  Alternants and Continuous Groups , 1905 .

[122]  S. Hilbert,et al.  A Mollifier Useful for Approximations in Sobolev Spaces and Some Applications to Approximating Solutions of Differential Equations , 1973 .

[123]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[124]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[125]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[126]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[127]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[128]  Elena Celledoni,et al.  Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators , 2005 .

[129]  Arne Marthinsen,et al.  Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames , 1999 .

[130]  M. Golubitsky,et al.  Bifurcation and Symmetry , 1992 .

[131]  R. Carter Lie Groups , 1970, Nature.

[132]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[133]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[134]  Francis X. Giraldo,et al.  A nodal triangle-based spectral element method for the shallow water equations on the sphere , 2005 .

[135]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[136]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[137]  Antonella Zanna,et al.  Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..

[138]  Antonella Zanna,et al.  Efficient Computation of the Matrix Exponential by Generalized Polar Decompositions , 2004, SIAM J. Numer. Anal..

[139]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[140]  Brynjulf Owren,et al.  Order conditions for commutator-free Lie group methods , 2006 .

[141]  Phillip A. Griffiths,et al.  Rational Homotopy Theory and Differential Forms , 1981 .

[142]  A. Bossavit,et al.  Symmetry, groups and boundary value problems. A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry , 1986 .

[143]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[144]  H. Munthe-Kaas On group Fourier analysis and symmetry preserving discretizations of PDEs , 2006 .

[145]  Antonella Zanna,et al.  Numerical integration of differential equations on homogeneous manifolds , 1997 .