Topics in structure-preserving discretization*
暂无分享,去创建一个
Hans Z. Munthe-Kaas | Snorre H. Christiansen | Brynjulf Owren | H. Munthe-Kaas | B. Owren | S. Christiansen
[1] E. Celledoni. Lie group methods , 2009 .
[2] Snorre H. Christiansen,et al. Foundations of Finite Element Methods for Wave Equations of Maxwell Type , 2009, Applied Wave Mathematics.
[3] Einar M. Rønquist,et al. Spectral and high order methods for partial differential equations : selected papers from the ICOSAHOM '09 conference, June 22-26, Trondheim, Norway , 2010 .
[4] Stein Krogstad,et al. Generalized polar coordinates on Lie groups and numerical integrators , 2009, Numerische Mathematik.
[5] Rudolf Lidl,et al. A class of orthogonal polynomials ink variables , 1982 .
[6] Oswald Knoth,et al. Multirate infinitesimal step methods for atmospheric flow simulation , 2009 .
[7] Elena Celledoni,et al. Semi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems , 2009, J. Sci. Comput..
[8] Masaaki Sugihara,et al. Conservative numerical schemes for the Ostrovsky equation , 2010, J. Comput. Appl. Math..
[9] K. Georg,et al. Exploiting Symmetry in Solving Linear Equations , 1992 .
[10] Snorre H. Christiansen,et al. On Constraint Preservation in Numerical Simulations of Yang-Mills Equations , 2006, SIAM J. Sci. Comput..
[11] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[12] S. Blanes,et al. Fourth-and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems , 2006 .
[13] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[14] I. N. Sneddon,et al. The Solution of Ordinary Differential Equations , 1987 .
[15] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[16] Masaaki Sugihara,et al. Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method , 2002 .
[17] L. Lopez,et al. Applications of the Cayley approach in the numerical solution of matrix differential systems of quadratic groups , 2001 .
[18] O. Gonzalez. Time integration and discrete Hamiltonian systems , 1996 .
[19] H. Munthe-Kaas,et al. Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[20] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[21] Snorre H. Christiansen. Éléments finis mixtes minimaux sur les polyèdres , 2010 .
[22] J. C. Simo,et al. Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .
[23] Brynjulf Owren,et al. A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..
[24] A. Fässler,et al. Group Theoretical Methods and Their Applications , 1992 .
[25] H. Munthe-Kaas. High order Runge-Kutta methods on manifolds , 1999 .
[26] Daan Huybrechs,et al. From high oscillation to rapid approximation V: the equilateral triangle , 2011 .
[27] R. J. Beerends. Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator , 1991 .
[28] H. Whitney. Geometric Integration Theory , 1957 .
[29] S. Krogstad. Generalized integrating factor methods for stiff PDEs , 2005 .
[30] André Well. Sur les théorèmes de de Rham , 1952 .
[31] J. D. Lawson. Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .
[32] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[33] K. Karlsen,et al. Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.
[34] Ilio Galligani,et al. Mathematical Aspects of Finite Element Methods , 1977 .
[35] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[36] E. Allgower,et al. Exploiting symmetry in boundary element methods , 1992 .
[37] D. Huybrechs. On the Fourier extension of non-periodic functions , 2009 .
[38] Masaaki Sugihara,et al. Linearly Implicit Finite Difference Schemes Derived by the Discrete Variational Method (Numerical Soluti on of Partial Differential Equations and Related Topics) , 2000 .
[39] Karen K. Uhlenbeck,et al. Geometry and Quantum Field Theory , 1995 .
[40] S. P. Nørsett. An A-stable modification of the Adams-Bashforth methods , 1969 .
[41] Tim Warburton,et al. An explicit construction of interpolation nodes on the simplex , 2007 .
[42] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[43] Daan Huybrechs,et al. On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..
[44] Snorre H. Christiansen,et al. On the linearization of Regge calculus , 2011, Numerische Mathematik.
[45] G. R. W. Quispel,et al. Linearization-preserving self-adjoint and symplectic integrators , 2009 .
[46] J. Schöberl,et al. TANGENTIAL-DISPLACEMENT AND NORMAL–NORMAL-STRESS CONTINUOUS MIXED FINITE ELEMENTS FOR ELASTICITY , 2011 .
[47] Kenneth H. Karlsen,et al. Convergence of a mixed method for a semi-stationary compressible Stokes system , 2009, Math. Comput..
[48] S. Christiansen,et al. CONVERGENCE OF A CONSTRAINED FINITE ELEMENT DISCRETIZATION OF THE MAXWELL KLEIN GORDON EQUATION , 2011 .
[49] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[50] Arne Marthinsen,et al. Quadrature methods based on the Caylay transform , 2001 .
[51] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[52] Brynjulf Owren,et al. Preserving multiple first integrals by discrete gradients , 2010, 1011.0478.
[53] Leszek Demkowicz,et al. H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .
[54] R. Hiptmair,et al. Acta Numerica 2002: Finite elements in computational electromagnetism , 2002 .
[55] C. B. Shoemaker,et al. Applications of finite groups. , 1961 .
[56] Ralf Hiptmair,et al. Canonical construction of finite elements , 1999, Math. Comput..
[57] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[58] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[59] D. Furihata,et al. Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .
[60] Arne Marthinsen,et al. Norges Teknisk-naturvitenskapelige Universitet Integration Methods Based on Canonical Coordinates of the Second Kind Integration Methods Based on Canonical Coordinates of the Second Kind , 2022 .
[61] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[62] Feng Kang,et al. Volume-preserving algorithms for source-free dynamical systems , 1995 .
[63] V. K. Patodi,et al. Riemannian Structures and Triangulations of Manifold , 1976 .
[64] Johannes Tausch,et al. Numerical Exploitation of Equivariance , 1998 .
[65] Daisuke Furihata,et al. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .
[66] Gilbert Strang,et al. Approximation in the finite element method , 1972 .
[67] Pavel B. Bochev,et al. Principles of Mimetic Discretizations of Differential Operators , 2006 .
[68] S. Christiansen. A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .
[69] Leszek F. Demkowicz,et al. p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..
[70] Elena Celledoni,et al. Approximating the exponential from a Lie algebra to a Lie group , 2000, Math. Comput..
[71] V. K. Patodi. Riemannian Structures and Triangulations of Manifolds , 2010 .
[72] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[73] H. Munthe-Kaas. Lie-Butcher theory for Runge-Kutta methods , 1995 .
[74] Elena Celledoni,et al. Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..
[75] Luciano Lopez,et al. The Cayley transform in the numerical solution of unitary differential systems , 1998, Adv. Comput. Math..
[76] Ernst Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[77] Daisuke Furihata,et al. A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation , 2003 .
[78] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[79] J. Lomont,et al. Applications of finite groups , 1959 .
[80] H. Munthe-Kaas. Runge-Kutta methods on Lie groups , 1998 .
[81] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[82] M. Liebeck,et al. Representations and Characters of Groups , 1995 .
[83] Panayot S. Vassilevski,et al. Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..
[84] R. Lidl,et al. Tschebyscheffpolynome in mehreren Variablen. , 1975 .
[85] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[86] Jan Mandel,et al. An abstract theory for the domain reduction method , 2005, Computing.
[87] Daisuke Furihata,et al. A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.
[88] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[89] R. Eymard,et al. A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.
[90] Anthony Ralston,et al. Mathematical Methods for Digital Computers , 1960 .
[91] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[92] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[93] S. Blanes,et al. The Magnus expansion and some of its applications , 2008, 0810.5488.
[94] Snorre H. Christiansen,et al. A dual finite element complex on the barycentric refinement , 2005, Math. Comput..
[95] Krister Åhlander,et al. Applications of the Generalized Fourier Transform in Numerical Linear Algebra , 2005 .
[96] Yoshimasa Nakamura,et al. New numerical integrator for the Stäckel system conserving the same number of constants of motion as the degree of freedom , 2006 .
[97] Snorre H. Christiansen,et al. Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension , 2007, Numerische Mathematik.
[98] Donald Greenspan,et al. Discrete mechanics—A general treatment , 1974 .
[99] Ragnar Winther,et al. On variational eigenvalue approximation of semidefinite operators , 2010, 1005.2059.
[100] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[101] P. Crouch,et al. Numerical integration of ordinary differential equations on manifolds , 1993 .
[102] A. Iserles,et al. Methods for the approximation of the matrix exponential in a Lie‐algebraic setting , 1999, math/9904122.
[103] Snorre H. Christiansen,et al. Smoothed projections in finite element exterior calculus , 2007, Math. Comput..
[104] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[105] Takayasu Matsuo. Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .
[106] Antonella Zanna,et al. Adjoint and Selfadjoint Lie-group Methods , 2001 .
[107] K. William Morton. The convection–diffusion Petrov–Galerkin story , 2010 .
[108] Willard Miller,et al. The IMA volumes in mathematics and its applications , 1986 .
[109] A. Iserles,et al. On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[110] Yuri A. Kuznetsov,et al. Convergence analysis and error estimates for mixed finite element method on distorted meshes , 2005, J. Num. Math..
[111] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[112] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[113] R. Bryant. An introduction to Lie groups and symplectic geometry , 1995 .
[114] Tom H. Koornwinder,et al. Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III , 1974 .
[115] H. Munthe-Kaas,et al. On Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles , 2011 .
[116] Tarmo Soomere,et al. Applied Wave Mathematics - Selected Topics in Solids, Fluids, and Mathematical Methods , 2009, Applied Wave Mathematics.
[117] D. Furihata,et al. Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .
[118] William Douglas Withers,et al. Generalized Chebyshev polynomials associated with affine Weyl groups , 1988 .
[119] Jean-Pierre Serre,et al. Linear representations of finite groups , 1977, Graduate texts in mathematics.
[120] Takayasu Matsuo,et al. New conservative schemes with discrete variational derivatives for nonlinear wave equations , 2007 .
[121] H. F. Baker,et al. Alternants and Continuous Groups , 1905 .
[122] S. Hilbert,et al. A Mollifier Useful for Approximations in Sobolev Spaces and Some Applications to Approximating Solutions of Differential Equations , 1973 .
[123] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[124] J. Bona,et al. Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[125] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[126] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[127] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[128] Elena Celledoni,et al. Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators , 2005 .
[129] Arne Marthinsen,et al. Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames , 1999 .
[130] M. Golubitsky,et al. Bifurcation and Symmetry , 1992 .
[131] R. Carter. Lie Groups , 1970, Nature.
[132] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[133] Joachim Schöberl,et al. A posteriori error estimates for Maxwell equations , 2007, Math. Comput..
[134] Francis X. Giraldo,et al. A nodal triangle-based spectral element method for the shallow water equations on the sphere , 2005 .
[135] Jan S. Hesthaven,et al. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .
[136] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[137] Antonella Zanna,et al. Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..
[138] Antonella Zanna,et al. Efficient Computation of the Matrix Exponential by Generalized Polar Decompositions , 2004, SIAM J. Numer. Anal..
[139] A. Ostermann,et al. A Class of Explicit Exponential General Linear Methods , 2006 .
[140] Brynjulf Owren,et al. Order conditions for commutator-free Lie group methods , 2006 .
[141] Phillip A. Griffiths,et al. Rational Homotopy Theory and Differential Forms , 1981 .
[142] A. Bossavit,et al. Symmetry, groups and boundary value problems. A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry , 1986 .
[143] Elena Celledoni,et al. Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..
[144] H. Munthe-Kaas. On group Fourier analysis and symmetry preserving discretizations of PDEs , 2006 .
[145] Antonella Zanna,et al. Numerical integration of differential equations on homogeneous manifolds , 1997 .