Comparing the performance of the genetic and local search algorithms for solving the satisfiability problems

The satisfiability problem (SAT), as one of the six basic core NP-complete problems, has been the deserving object of many studies in the last two decades [1]. Stochastic local search and genetic algorithms are two current state-of-the-art techniques for solving the SATs. GASAT [2,1] and SAT-WAGA [4] are two current state-of-the-art genetic algorithms for solving SATs. Beside, the discrete lagrange-multiplier (DLM) [8-10] and the exponentiated subgradient algorithms (ESG) [12] are the current state-of-the-art local search algorithms for solving SATs. In this paper, we compare DLM and ESG with GASAT and SAT-WAGA. We show that the performance of the local search-based algorithms: DLM and ESG is better than the performance of the genetic-based algorithms: GASAT and SAT-WAGA. We further analyze the results of the comparisons. We hope these comparisons give light to the researchers while researching in genetic and local search algorithms, help understanding of the reasons for these algorithms' performance and behaviour and to the new researchers who are in the process of choosing research direction.

[1]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[2]  Anbulagan Extending Unit Propagation Look-Ahead of DPLL Procedure , 2004, PRICAI.

[3]  Matthias F. Stallmann,et al.  A Local Search SAT Solver Using an Effective Switching Strategy and an Efficient Unit Propagation , 2003, SAT.

[4]  Abdul Sattar,et al.  Advances in Local Search for Satisfiability , 2007, Australian Conference on Artificial Intelligence.

[5]  E. A. Hirsch,et al.  UnitWalk: A New SAT Solver that Uses Local Search Guided by Unit Clause Elimination , 2005 .

[6]  Henry A. Kautz,et al.  A Dynamic Approach for MPE and Weighted MAX-SAT , 2007, IJCAI.

[7]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[8]  Adnan Darwiche,et al.  RSat 2.0: SAT Solver Description , 2006 .

[9]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[10]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[11]  Zhe Wu,et al.  Solving hard satisfiability problems: a unified algorithm based on discrete Lagrange multipliers , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[12]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[13]  Jegou Philippe,et al.  Decomposition and good recording for solving Max-CSPs , 2004 .

[14]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[15]  Peter J. Stuckey,et al.  Reducing search space in local search for constraint satisfaction , 2002, AAAI/IAAI.

[16]  Defu Zhang,et al.  An algorithm based on tabu search for satisfiability problem , 2008, Journal of Computer Science and Technology.

[17]  Daniel G. Schweikert,et al.  Proceedings of the 29th ACM/IEEE Design Automation Conference , 1992, DAC 1992.

[18]  Inês Lynce,et al.  OpenSAT: An Open Source SAT Software Project , 2003 .

[19]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[20]  Chu Min Li,et al.  Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.

[21]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[22]  Holger H. Hoos,et al.  UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.

[23]  Peter J. Stuckey,et al.  A Lagrangian reconstruction of GENET , 2000, Artif. Intell..

[24]  Zhe Wu,et al.  The Theory of Discrete Lagrange Multipliers for Nonlinear Discrete Optimization , 1999, CP.

[25]  Sergey Berezin,et al.  CVC Lite: A New Implementation of the Cooperating Validity Checker Category B , 2004, CAV.

[26]  Jin-Kao Hao,et al.  A Hybrid Genetic Algorithm for the Satisfiability Problem , 2002 .

[27]  David L. Dill,et al.  CVC: A Cooperating Validity Checker , 2002, CAV.

[28]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[29]  Zhe Wu,et al.  Trap Escaping Strategies in Discrete Lagrangian Methods for Solving Hard Satisfiability and Maximum Satisfiability Problems , 1999, AAAI/IAAI.

[30]  Masahiro Nagamatu,et al.  Theoretical study on mixed parallel execution for solving SAT , 2007 .

[31]  Inês Lynce,et al.  The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms , 2002, International Workshop on Constraint Solving and Constraint Logic Programming.

[32]  Abdul Sattar,et al.  Old Resolution Meets Modern SLS , 2005, AAAI.

[33]  Zhe Wu,et al.  Penalty Formulations and Trap-Avoidance Strategies for Solving Hard Satisfiability Problems , 2005, Journal of Computer Science and Technology.

[34]  Zhe Wu,et al.  An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.

[35]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[36]  Gilles Audemard,et al.  GUNSAT: A Greedy Local Search Algorithm for Unsatisfiability , 2007, IJCAI.

[37]  Byron Boots,et al.  DC-SSAT: A Divide-and-Conquer Approach to Solving Stochastic Satisfiability Problems Efficiently , 2005, AAAI.

[38]  Dale Schuurmans,et al.  The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming , 2001, IJCAI.

[39]  Adnan Darwiche,et al.  A New Clause Learning Scheme for Efficient Unsatisfiability Proofs , 2008, AAAI.

[40]  Fahiem Bacchus,et al.  Enhancing Davis Putnam with extended binary clause reasoning , 2002, AAAI/IAAI.

[41]  Luca Maria Gambardella,et al.  Maximum satisfiability: How good are tabu search and plateau moves in the worst-case? , 2005, Eur. J. Oper. Res..

[42]  Toby Walsh,et al.  Solving Non-clausal Formulas with DPLL search , 2004, SAT.

[43]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[44]  Masahiro Nagamatu,et al.  On the stability of Lagrange programming neural networks for satisfiability problems of propositional calculus , 1996, Neurocomputing.

[45]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[46]  Jin-Kao Hao,et al.  GASAT: A Genetic Local Search Algorithm for the Satisfiability Problem , 2006, Evolutionary Computation.