A Computational View of Interior-Point Methods for Linear Programming

Many issues that are crucial for an e cient implementation of an interior point algorithm are addressed in this paper. To start with, a prototype primal{dual algorithm is presented. Next, many tricks that make it so e cient in practice are discussed in detail. Those include: the preprocessing techniques, the initialization approaches, the methods of computing search directions (and lying behind them linear algebra techniques), centering strategies and methods of stepsize selection. Several reasons for the manifestations of numerical di culties like e.g.: the primal degeneracy of optimal solutions or the lack of feasible solutions are explained in a comprehensive way. A motivation for obtaining an optimal basis is given and a practicable algorithm to perform this task is presented. Advantages of di erent methods to perform postoptimal analysis (applicable to interior point optimal solutions) are discussed. Important questions that still remain open in the implementations of interior point methods are also addressed, e.g.: performing correct postoptimal analysis, detecting infeasibility or resolving di culties arising in a presence of unbounded optimal faces. Challenging practical problem of warm start is recalled and two potentially attractive approaches to it are suggested. To facilitate the understanding of di erent implementation strategies, some illustrative numerical results on a subset of problems from the Netlib collection are presented.

[1]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[2]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[3]  Harvey J. Greenberg,et al.  The use of the optimal partition in a linear programming solution for postoptimal analysis , 1994, Oper. Res. Lett..

[4]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[5]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[6]  D. Shanno,et al.  A unified view of interior point methods for linear programming , 1990 .

[7]  S. Thomas McCormick,et al.  A hierarchical algorithm for making sparse matrices sparser , 1992, Math. Program..

[8]  B. Jansen,et al.  The theory of linear programming:skew symmetric self-dual problems and the central path * , 1994 .

[9]  Jean-Philippe Vial,et al.  Experimental Behavior of an Interior Point Cutting Plane Algorithm for Convex Programming: An Application to Geometric Programming , 1994, Discret. Appl. Math..

[10]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[11]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[12]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[13]  Jean-Philippe Vial,et al.  Primal-dual target-following algorithms for linear programming , 1996, Ann. Oper. Res..

[14]  John A. Tomlin,et al.  Implementing Interior Point Linear Programming Methods in the Optimization Subroutine Library , 1992, IBM Syst. J..

[15]  J. Gondzio,et al.  Presolove Analysis of Linear Programs Prior to Applying an Interior Point Method , 1997, INFORMS J. Comput..

[16]  Clyde L. Monma,et al.  Computational experience with a dual affine variant of Karmarkar's method for linear programming , 1987 .

[17]  Robert E. Bixby,et al.  Progress in Linear Programming , 1993 .

[18]  Tamás Terlaky,et al.  An interior point approach to postoptimal and parametric analysis in linear programming Report 92-21 , 1993 .

[19]  I. Duff,et al.  On the augmented system approach to sparse least-squares problems , 1989 .

[20]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[21]  Nimrod Megiddo,et al.  On Finding Primal- and Dual-Optimal Bases , 1991, INFORMS J. Comput..

[22]  Elmer Earl. Branstetter,et al.  The theory of linear programming , 1963 .

[23]  Mauricio G. C. Resende,et al.  Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm , 1989, INFORMS J. Comput..

[24]  Clyde L. Monma,et al.  An Implementation of a Primal-Dual Interior Point Method for Linear Programming , 1989, INFORMS J. Comput..

[25]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[26]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[27]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[28]  Shinji Mizuno,et al.  Theoretical convergence of large-step primal—dual interior point algorithms for linear programming , 1993, Math. Program..

[29]  Joaquim Júdice,et al.  An Investigation of Interior-Point Algorithms for the Linear Transportation Problem , 1996, SIAM J. Sci. Comput..

[30]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[31]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[32]  Gautam Mitra,et al.  Experimental investigations in combining primal dual interior point method and simplex based LP solvers , 1995, Ann. Oper. Res..

[33]  K. Turner Computing projections for the Karmarkar algorithm , 1991 .

[34]  Y. Ye,et al.  Combining Interior-Point and Pivoting Algorithms for Linear Programming , 1996 .

[35]  J. W. Walker,et al.  Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .

[36]  I. Duff,et al.  The factorization of sparse symmetric indefinite matrices , 1991 .

[37]  Alan George,et al.  The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..

[38]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[39]  Gautam Mitra,et al.  Solving Large Scale Linear Programming Problems Using an Interior Point Method on a Massively Parallel Simd Computer , 1994, Parallel Algorithms Appl..

[40]  A. W. Tucker,et al.  Duality Theory of Linear Programs: A Constructive Approach with Applications , 1969 .

[41]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[42]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[43]  L. D. J. C. Loyens,et al.  A parallel interior point algorithm for linear programming on a network of transputers , 1993, Ann. Oper. Res..

[44]  R. Vanderbei Splitting dense columns in sparse linear systems , 1991 .

[45]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[46]  Gautam Mitra,et al.  Analysis of mathematical programming problems prior to applying the simplex algorithm , 1975, Math. Program..

[47]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[48]  G. Stewart On scaled projections and pseudoinverses , 1989 .

[49]  Florian A. Potra,et al.  An Infeasible-Interior-Point Predictor-Corrector Algorithm for Linear Programming , 1996, SIAM J. Optim..

[50]  Sanjay Mehrotra,et al.  Higher order methods and their performance , 1990 .

[51]  S. Mizuno Polynomiality of the Kojima-Megiddo-Mizuno Infeasible Interior Point Algorithm for Linear Programming , 1992 .

[52]  Kees Roos,et al.  Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..

[53]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[54]  Jeffrey C. Lagarias,et al.  Power series variants of Karmarkar-type algorithms , 1989, AT&T Technical Journal.

[55]  Clyde L. Monma,et al.  Further Development of a Primal-Dual Interior Point Method , 1990, INFORMS J. Comput..

[56]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..