Fusion of local normalization and Gabor entropy weighted features for face identification

Face recognition is one of the most extensively studied topics in image analysis because of its wide range of possible applications such as in surveillance, access control, content-based video search, human-computer interaction, electronic advertisement and more. Face identification is a one-to-n matching problem where a captured face is compared to n samples in a database. In this work we propose two new methods for face identification. The first one combines entropy-like weighted Gabor features with the local normalization of Gabor features. The second fuses the entropy-like weighted Gabor features at the score level with the local binary pattern (LBP) applied to the magnitude (LGBP) and phase (LGXP) components of the Gabor features. We used the FERET, AR, and FRGC 2.0 databases to test and compare our results with those previously published. Results on these databases show significant improvement relative to previously published results, reaching the best performance on the FERET and AR databases. Our methods also showed significant robustness to slight pose variations. We tested the proposed methods assuming noisy eye detection to check their robustness to inexact face alignment. Results show that the proposed methods are robust to errors of up to 3 pixels in eye detection. HighlightsWe propose an entropy weighted strategy over selected Gabor features.We fuse local normalization with Gabor features to improve face identification.Fusion of different features improve face identification relative to cases with no fusion.Our results are compared advantageously on several international face databases.We tested our methods with variable illumination, gesticulation, pose and occlusion.

[1]  LinLin Shen,et al.  Local Gabor Binary Pattern Whitened PCA: A Novel Approach for Face Recognition from Single Image Per Person , 2009, ICB.

[2]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[3]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Martin D. Levine,et al.  Face Recognition Using the Discrete Cosine Transform , 2001, International Journal of Computer Vision.

[5]  Josep Roure Alcobé,et al.  An efficient face verification method in a transformed domain , 2007, Pattern Recognit. Lett..

[6]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  M. Sharkas,et al.  Eigenfaces vs. fisherfaces vs. ICA for face recognition; a comparative study , 2008, 2008 9th International Conference on Signal Processing.

[8]  PietikainenMatti,et al.  Face Description with Local Binary Patterns , 2006 .

[9]  Paola Campadelli,et al.  Precise Eye and Mouth Localization , 2009, Int. J. Pattern Recognit. Artif. Intell..

[10]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Dennis Gabor,et al.  Theory of communication , 1946 .

[12]  Claudio A. Perez,et al.  Illumination compensation method for local matching Gabor face classifier , 2010, 2010 International Symposium on Optomechatronic Technologies.

[13]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Claudio A. Perez,et al.  Face and iris localization using templates designed by particle swarm optimization , 2010, Pattern Recognit. Lett..

[15]  Claudio A. Perez,et al.  Real-Time Iris Detection on Coronal-Axis-Rotated Faces , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[16]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Jie Chen,et al.  Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition , 2010, IEEE Transactions on Image Processing.

[18]  Claudio A. Perez,et al.  Genetic design of biologically inspired receptive fields for neural pattern recognition , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Claudio A. Perez,et al.  Real-Time Template Based Face and Iris Detection on Rotated Faces , 2009 .

[20]  Zihan Zhou,et al.  Towards a practical face recognition system: Robust registration and illumination by sparse representation , 2009, CVPR.

[21]  Joni-Kristian Kämäräinen,et al.  Simple Gabor feature space for invariant object recognition , 2004, Pattern Recognit. Lett..

[22]  Christine Podilchuk,et al.  Face recognition using DCT-based feature vectors , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[23]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[24]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[25]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[26]  Claudio A. Perez,et al.  Linear versus nonlinear neural modeling for 2-D pattern recognition , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[27]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Ran He,et al.  Maximum Correntropy Criterion for Robust Face Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Stan Z. Li,et al.  Face Recognition with Local Gabor Textons , 2007, ICB.

[30]  Wen Gao,et al.  Hierarchical Ensemble of Global and Local Classifiers for Face Recognition , 2009, IEEE Trans. Image Process..

[31]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[32]  Wen Gao,et al.  Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition , 2007, IEEE Transactions on Image Processing.

[33]  Claudio A. Perez,et al.  Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count , 2011, Pattern Recognit..

[34]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[36]  Francesco Bianconi,et al.  Evaluation of the effects of Gabor filter parameters on texture classification , 2007, Pattern Recognit..

[37]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[39]  J KriegmanDavid,et al.  Eigenfaces vs. Fisherfaces , 1997 .

[40]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[41]  Claudio A. Perez,et al.  Local matching Gabor entropy weighted face recognition , 2011, Face and Gesture 2011.

[42]  Wen Gao,et al.  Learned local Gabor patterns for face representation and recognition , 2009, Signal Process..

[43]  Dario Maio,et al.  2D face recognition based on supervised subspace learning from 3D models , 2008, Pattern Recognit..

[44]  Qiang Ji,et al.  A Comparative Study of Local Matching Approach for Face Recognition , 2007, IEEE Transactions on Image Processing.

[45]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[46]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[47]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[48]  Rama Chellappa,et al.  Remote identification of faces: Problems, prospects, and progress , 2012, Pattern Recognit. Lett..

[49]  Patrick J. Flynn,et al.  Preliminary Face Recognition Grand Challenge Results , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).