Nonlinear system identification by evolutionary computation and recursive estimation method

Nonlinear system identification using evolutionary computation and recursive estimation method is presented. Four different recursive estimation methods, recursive least-squares, recursive least-squares with exponential forgetting, stochastic algorithm, and projection algorithm, combined with evolution algorithm are used in this study. Conventional system identification using recursive estimation methods are also given for comparison. After test, the proposed scheme has better convergence and accuracy on parameter estimation than the conventional estimation method.

[1]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[2]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[3]  Biao Huang,et al.  Process identification based on last principal component analysis , 2001 .

[4]  P. E. Wellstead,et al.  Self-tuning systems , 1991 .

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  M. B. Zarrop,et al.  Self-Tuning Systems: Control and Signal Processing , 1991 .

[7]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[8]  Lorenzo Farina,et al.  On model consistency in compartmental systems identification , 2002, Autom..

[9]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[10]  Ioan D. Landu System identification and control design using P.I.M.+ software , 1990 .

[11]  S. Kaczmarz Approximate solution of systems of linear equations , 1993 .

[12]  Jay H. Lee,et al.  On the use of constraints in least squares estimation and control , 2002, Autom..

[13]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[14]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[15]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Tien C. Hsia,et al.  System identification: Least-squares methods , 1977 .

[19]  Chin-Teng Lin,et al.  Neural fuzzy systems , 1994 .

[20]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[21]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[22]  P. E. Wellstead,et al.  Knowledge-based self-adaptive control , 1988 .

[23]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[24]  R. Plackett Some theorems in least squares. , 1950, Biometrika.

[25]  Juan Carlos Gómez,et al.  Nonlinear Identification of Multicomponent Batch Distillation Processes , 2000 .