Digital hyperplane recognition in arbitrary fixed dimension within an algebraic computation model

In this paper we present an algorithm for the integer linear programming (ILP) problem within an algebraic model of computation and use it to solve the following digital plane segment recognition problem: Given a set of points M={p^1,p^2,...,p^m}@?R^n, decide whether M is a portion of a digital hyperplane and, if so, determine its analytical representation. In our setting p^1, p^2, ...,p^m may be arbitrary points (possibly, with rational and/or irrational coefficients) and the dimension n may be any arbitrary fixed integer. We reduce this last problem to an ILP to which our general integer programming algorithm applies. It performs O(mlogD) arithmetic operations, where D is a bound on the norm of the domain elements. For the special case of problem dimension two, we propose an elementary algorithm that takes advantage of the specific geometry of the problem and appears to be optimal. It implies an efficient algorithm for digital line segment recognition.

[1]  Lilian Buzer,et al.  A linear incremental algorithm for naive and standard digital lines and planes recognition , 2003, Graph. Model..

[2]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[3]  Valentin E. Brimkov,et al.  Complexity Analysis for Digital Hyperplane Recognition in Arbitrary Fixed Dimension , 2005, DGCI.

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  Valentin E. Brimkov,et al.  Computational Aspects of Digital Plane and Hyperplane Recognition , 2006, IWCIA.

[6]  Erich Novak,et al.  The Real Number Model in Numerical Analysis , 1995, J. Complex..

[7]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[8]  Reinhard Klette,et al.  Digital Planar Segment Based Polyhedrization for Surface Area Estimation , 2001, IWVF.

[9]  Ivan Stojmenovic,et al.  A Parametrization of Digital Planes by Least-Squares Fits and Generalizations , 1996, CVGIP Graph. Model. Image Process..

[10]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[11]  Lilian Buzer An Incremental Linear Time Algorithm for Digital Line and Plane Recognition Using a Linear Incremental Feasibility Problem , 2002, DGCI.

[12]  Adi Shamir,et al.  Lattice Attacks on NTRU , 1997, EUROCRYPT.

[13]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[14]  Chul E. Kim Three-Dimensional Digital Planes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Valentin E. Brimkov,et al.  On the Complexity of Integer Programming in the Blum-Shub-Smale Computational Model , 2000, IFIP TCS.

[16]  Mauro Leoncini,et al.  Tight complexity bounds for the two-dimensional real knapsack problem , 1999 .

[17]  Valentin E. Brimkov,et al.  Real Data--Integer Solution Problems within the Blum-Shub-Smale Computational Model , 1997, J. Complex..

[18]  Jeffrey C. Lagarias,et al.  Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.

[19]  Reinhard Klette,et al.  Digital planarity - A review , 2007, Discret. Appl. Math..

[20]  Peter Veelaert Digital Planarity of Rectangular Surface Segments , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[22]  Attila Kuba,et al.  Discrete tomography in medical imaging , 2003, Proceedings of the IEEE.

[23]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[24]  John Case,et al.  Lattice computers for approximating Euclidean space , 2001, JACM.

[25]  Eric Andres,et al.  Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..

[26]  Don Coppersmith,et al.  Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known , 1996, EUROCRYPT.

[27]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[28]  Eric Andres,et al.  Object discretizations in higher dimensions , 2002, Pattern Recognit. Lett..

[29]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[30]  Jean-Marc Chassery,et al.  Recognition of Digital Naive Planes and Polyhedrization , 2000, DGCI.

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  Mohamed Tajine,et al.  Recognizing arithmetic straight lines and planes , 1996, DGCI.

[33]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[34]  Ivan Stojmenovic,et al.  On the recognition of digital planes in three-dimensional space , 1991, Pattern Recognit. Lett..

[35]  Sidnie Dresher Feit A Fast Algorithm for the Two-Variable Integer Programming Problem , 1984, JACM.

[36]  Isabelle Debled-Rennesson,et al.  New approach to digital planes , 1995, Other Conferences.

[37]  Jean-Pierre Reveilles,et al.  Combinatorial pieces in digital lines and planes , 1995, Optics & Photonics.

[38]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[39]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[40]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .