The variability of low‐latitude ionospheric amplitude and phase scintillation detected by a triple‐frequency GPS receiver

[1]  E. Costa,et al.  Statistical analysis of C/NOFS planar Langmuir probe data , 2014 .

[2]  Masahiro Yamamoto,et al.  On the application of differential phase measurements to study the zonal large scale wave structure (LSWS) in the ionospheric electron content , 2012 .

[3]  R. Tsunoda,et al.  Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity , 1985 .

[4]  Paul M. Kintner,et al.  GPS L-band scintillations and ionospheric irregularity zonal drifts inferred at equatorial and low-latitude regions , 2008 .

[5]  Gérard Lachapelle,et al.  Investigating the Impact of Ionospheric Scintillation using a GPS Software Receiver , 2005 .

[6]  J. Aarons,et al.  Global morphology of ionospheric scintillations , 1971, Proceedings of the IEEE.

[7]  R. Tsunoda On the generation and growth of equatorial backscatter plumes: 2. Structuring of the west walls of upwellings , 1983 .

[8]  K. Groves,et al.  Latitudinal and Local Time Variation of Ionospheric Turbulence Parameters during the Conjugate Point Equatorial Experiment in Brazil , 2012 .

[9]  M. Muella,et al.  Low‐latitude scintillation weakening during sudden stratospheric warming events , 2015 .

[10]  John M. Retterer,et al.  CONVECTIVE IONOSPHERIC STORMS: A REVIEW , 2011 .

[11]  A. Gwal,et al.  Amplitude and phase scintillation study at Chiang Rai, Thailand , 2006 .

[12]  Beach Theodore,et al.  GLOBAL POSITIONING SYSTEM STUDIES OF EQUATORIAL SCINTILLATIONS , 1998 .

[13]  R. L. Leadabrand,et al.  Early results from the DNA Wideband satellite experiment—Complex‐signal scintillation , 1978 .

[14]  M. A. Abdu,et al.  Magnetic declination control of the equatorial F region dynamo electric field development and spread F , 1981 .

[15]  Rui Xu,et al.  An Analysis of Low-Latitude Ionospheric Scintillation and Its Effects on Precise Point Positioning , 2012 .

[16]  Patrick A. Roddy,et al.  Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012) , 2013 .

[17]  G. Bust,et al.  C/NOFS observations of intermediate and transitional scale‐size equatorial spread F irregularities , 2009 .

[18]  Sandro M. Radicella,et al.  Problems in data treatment for ionospheric scintillation measurements , 2002 .

[19]  Marcio Aquino,et al.  Statistics of ionospheric scintillation occurrence over European high latitudes , 2014 .

[20]  S. Basu,et al.  Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes , 2001 .

[21]  John A. Klobuchar,et al.  Ionospheric Scintillation Effects on GPS in the Equatorial and Auroral Regions , 2003 .

[22]  On the Mutual Coherence Function for Transionospheric Waves and its Utility for Characterizing Ionospheric Irregularities with a GNSS Scintillation Monitor , 2015 .

[23]  Xiaoqing Pi,et al.  Monitoring of global ionospheric irregularities using the Worldwide GPS Network , 1997 .

[24]  Paul M. Kintner,et al.  Mapping and Survey of Plasma Bubbles over Brazilian Territory , 2007 .

[25]  Yu Morton,et al.  Characterization of high‐latitude ionospheric scintillation of GPS signals , 2013 .

[26]  Paul M. Kintner,et al.  Equatorial anomaly effects on GPS scintillations in brazil , 2003 .

[27]  C. Hegarty,et al.  Modeling the effects of ionospheric scintillation on GPS/Satellite‐Based Augmentation System availability , 2003 .

[28]  Bruno Bougard,et al.  Tackling ionospheric scintillation threat to GNSS in Latin America , 2011 .

[29]  Yu Morton,et al.  Comparison of the effect of high‐latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24 , 2015 .

[30]  K. Yeh,et al.  Radio wave scintillations in the ionosphere , 1982 .

[31]  P. Banerjee,et al.  Errors in position‐fixing by GPS in an environment of strong equatorial scintillations in the Indian zone , 2004 .

[32]  S. Skone,et al.  Limitations in GPS receiver tracking performance under ionospheric scintillation conditions , 2001 .

[33]  Waldecir João Perrella,et al.  Analysis of the Characteristics of Low-Latitude GPS Amplitude Scintillation Measured During Solar Maximum Conditions and Implications for Receiver Performance , 2012, Surveys in Geophysics.

[34]  Brent M. Ledvina,et al.  Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations , 2004 .

[35]  Biagio Forte,et al.  Analysis of strong ionospheric scintillation events measured by means of GPS signals at low latitudes during disturbed conditions , 2012 .

[36]  Yasuo Ogawa,et al.  New volume of Earth, Planets and Space with an open access-style publishing model under SpringerOpen , 2014, Earth, Planets and Space.

[37]  P. Jayachandran,et al.  High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: a superposed epoch analysis , 2014, Earth, Planets and Space.

[38]  P. T. Jayachandran,et al.  Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions , 2011 .

[39]  S. Basu,et al.  Morphology of phase and intensity scintillations in the auroral oval and polar cap , 1985 .

[40]  Yongliang Zhang,et al.  F-region Pedersen conductivity deduced using the TIMED/GUVI limb retrievals , 2006 .

[41]  J. Retterer,et al.  On the distribution of ion density depletion along magnetic field lines as deduced using C/NOFS , 2012 .

[42]  C. J. Zamlutti,et al.  Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of airglow observations , 2002 .

[43]  Paul M. Kintner,et al.  Fading timescales associated with GPS signals and potential consequences , 2001 .

[44]  Keith M. Groves,et al.  A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations , 2016 .

[45]  S. Basu,et al.  Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods , 1988 .

[46]  Theodore L. Beach,et al.  Perils of the GPS phase scintillation index (σϕ) , 2006 .

[47]  S. Basu Equatorial scintillations—a review , 1981 .

[48]  P. T. Jayachandran,et al.  Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010 , 2011 .

[49]  Marcio Aquino,et al.  Correlation of scintillation occurrence with interplanetary magnetic field reversals and impact on Global Navigation Satellite System receiver tracking performance , 2013 .

[50]  João Francisco Galera Monico,et al.  Extended ionospheric amplitude scintillation model for GPS receivers , 2014 .

[51]  Yuhua Zou,et al.  A study of GPS ionospheric scintillations observed at Guilin , 2009 .

[52]  Paul M. Kintner,et al.  GPS and ionospheric scintillations , 2007 .

[53]  A. J. Van Dierendonck,et al.  Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers , 1993 .

[54]  Baiqi Ning,et al.  Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum , 2010 .

[55]  Chi-Kuang Chao,et al.  On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities , 2008 .

[56]  I. Batista,et al.  A new aspect of magnetic declination control of equatorial spread F and F region dynamo , 1992 .

[57]  Milton Hirokazu Shimabukuro,et al.  Visual exploration and analysis of ionospheric scintillation monitoring data: The ISMR Query Tool , 2017, Comput. Geosci..