The research progress of tiling array technology and applications

Tiling array technology was improved from microarray technology. Over the past five years, tiling array has become an important tool for gathering genome information. Its features of high density and high throughput allow people to probe into life from the whole-genome level. This paper is a survey of tiling array technology and its applications. In addition, some typical algorithms for identifying expressed probe signals are described and compared.

[1]  E. Schadt,et al.  Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. , 2005, Trends in genetics : TIG.

[2]  Paul P. Gardner,et al.  A hidden Markov model approach for determining expression from genomic tiling micro arrays , 2006, BMC Bioinformatics.

[3]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[4]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[5]  J. Rinn,et al.  The transcriptional activity of human Chromosome 22. , 2003, Genes & development.

[6]  J. Claverie Fewer Genes, More Noncoding RNA , 2005, Science.

[7]  Chunlei Wu,et al.  Sequence dependence of cross-hybridization on short oligo microarrays , 2005, Nucleic acids research.

[8]  Deyou Zheng,et al.  Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome. , 2007, Genome research.

[9]  C. Reilly,et al.  Global assessment of cross-hybridization for oligonucleotide arrays. , 2006, Journal of biomolecular techniques : JBT.

[10]  Jiasen Lu,et al.  Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. , 2000, Nucleic acids research.

[11]  J. Ecker,et al.  Applications of DNA tiling arrays for whole-genome analysis. , 2005, Genomics.

[12]  K. Peck,et al.  Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. , 2004, Nucleic acids research.

[13]  Anne-Mieke Vandamme,et al.  SlidingBayes: exploring recombination using a sliding window approach based on Bayesian phylogenetic inference , 2005, Bioinform..

[14]  Scott A. Rifkin,et al.  A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster , 2004, Science.

[15]  Joseph M. Dale,et al.  Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome , 2003, Science.

[16]  Wolfgang Huber,et al.  Transcript mapping with high-density oligonucleotide tiling arrays , 2006, Bioinform..

[17]  Xiang-Jun Lu,et al.  Detecting transcriptionally active regions using genomic tiling arrays , 2006, Genome Biology.

[18]  G. Helt,et al.  Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution , 2005, Science.

[19]  Joseph R. Ecker,et al.  Corrigendum to ‘‘Applications of DNA tiling arrays for whole-genome analysis’’ [Genomics 85 (2005) 1–15] , 2005 .

[20]  S. P. Fodor,et al.  Large-Scale Transcriptional Activity in Chromosomes 21 and 22 , 2002, Science.

[21]  A. Sparks,et al.  Using the transcriptome to annotate the genome , 2002, Nature Biotechnology.

[22]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[23]  Eric E Schadt,et al.  Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing , 2003, Genome Biology.

[24]  Jizhong Zhou,et al.  Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation , 2005, Nucleic acids research.

[25]  Xiaoqiu Huang,et al.  Over 20% of human transcripts might form sense-antisense pairs. , 2004, Nucleic acids research.

[26]  A. K. Whitchurch,et al.  Gene expression microarrays , 2002 .

[27]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[28]  N. Nomura,et al.  Complete sequencing and characterization of 21,243 full-length human cDNAs , 2004, Nature Genetics.

[29]  Inge Jonassen,et al.  XHM: A system for detection of potential cross hybridizations in DNA microarrays , 2004, BMC Bioinformatics.

[30]  Mark Gerstein,et al.  Bioinformatics Original Paper a Supervised Hidden Markov Model Framework for Efficiently Segmenting Tiling Array Data in Transcriptional and Chip-chip Experiments: Systematically Incorporating Validated Biological Knowledge , 2022 .

[31]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[32]  S. Cawley,et al.  Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. , 2004, Genome research.

[33]  Vladimir Svetnik,et al.  A comprehensive transcript index of the human genome generated using microarrays and computational approaches , 2004, Genome Biology.

[34]  Mark Gerstein,et al.  Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. , 2005, Trends in genetics : TIG.

[35]  Jizhong Zhou,et al.  Empirical Establishment of Oligonucleotide Probe Design Criteria , 2005, Applied and Environmental Microbiology.

[36]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[37]  Wing Hung Wong,et al.  TileMap: create chromosomal map of tiling array hybridizations , 2005, Bioinform..

[38]  S. K. Moore Making chips to probe genes , 2001 .

[39]  Clifford A. Meyer,et al.  A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences , 2005, ISMB.

[40]  Sung-Keun Rhee,et al.  Improvement of Oligonucleotide Probe Design Criteria for Functional Gene Microarrays in Environmental Applications , 2006, Applied and Environmental Microbiology.

[41]  Thomas E. Royce,et al.  Global Identification of Human Transcribed Sequences with Genome Tiling Arrays , 2004, Science.