Generalised compositional theories and diagrammatic reasoning

This chapter provides an introduction to the use of diagrammatic language, or perhaps more accurately, diagrammatic calculus, in quantum information and quantum foundations. We illustrate the use of diagrammatic calculus in one particular case, namely the study of complementarity and non-locality, two fundamental concepts of quantum theory whose relationship we explore in later part of this chapter.

[1]  Hans Halvorson,et al.  Deep beauty : understanding the quantum world through mathematical innovation , 2011 .

[2]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[3]  N. Mermin Quantum mysteries revisited , 1990 .

[4]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[5]  B. Coecke,et al.  Spekkens's toy theory as a category of processes , 2011, 1108.1978.

[6]  L. Hardy Foliable Operational Structures for General Probabilistic Theories , 2009, 0912.4740.

[7]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[8]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[9]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[10]  D. Dieks Communication by EPR devices , 1982 .

[11]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[12]  R. C. Bose,et al.  COMBINATORIAL MATHEMATICS AND ITS APPLICATIONS, PROCEEDINGS OF THE CONFERENCE HELD APRIL 10-14, 1967, , 1969 .

[13]  Aleks Kissinger,et al.  Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing , 2012, ArXiv.

[14]  Simon Perdrix,et al.  Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.

[15]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[16]  Dominic Horsman,et al.  Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.

[17]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[18]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[19]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[20]  Paul G. Spirakis,et al.  Proceedings of the 37th international colloquium conference on Automata, languages and programming: Part II , 2010 .

[21]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state , 2000, Nature.

[22]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[23]  H. Barnum,et al.  Entropy and information causality in general probabilistic theories , 2009, 0909.5075.

[24]  Bob Coecke,et al.  New Structures for Physics , 2011 .

[25]  Anne Hillebrand,et al.  Quantum Protocols involving Multiparticle Entanglement and their Representations in the zx-calculus. , 2011 .

[26]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  William Edwards PHASE GROUPS AND LOCAL HIDDEN VARIABLES , 2010 .

[28]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[29]  Physical Review , 1965, Nature.

[30]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[31]  S. Gay,et al.  Semantic Techniques for Quantum Computation Semantic Techniques for Quantum Computation , 2009 .

[32]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[33]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[34]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[35]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.