Eocene dike swarm and felsic stock in Central Iran: Roles of metasomatized mantle wedge and Neo-Tethyan slab

[1]  Ming Wang,et al.  Origins and tectonic implications of Late Cretaceous adakite and primitive high-Mg andesite in the Songdo area, southern Lhasa subterrane, Tibet , 2019 .

[2]  T. Morishita,et al.  Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of Jandaq, central Iran): implications for the eastern branch of the Neo-Tethys subduction , 2019, Turkish Journal of Earth Sciences.

[3]  Zhidan Zhao,et al.  Late Cretaceous volcanic rocks in the Sangri area, southern Lhasa Terrane, Tibet: Evidence for oceanic ridge subduction , 2019, Lithos.

[4]  F. Salvini,et al.  The long‐term evolution of the Doruneh Fault region (Central Iran): A key to understanding the spatio‐temporal tectonic evolution in the hinterland of the Zagros convergence zone , 2018, Geological Journal.

[5]  M. Santosh,et al.  Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites , 2018 .

[6]  V. Kamenetsky,et al.  Compositional characteristics and geodynamic significance of late Miocene volcanic rocks associated with the Chah Zard epithermal gold–silver deposit, southwest Yazd, Iran , 2018 .

[7]  C. Wanhainen,et al.  Geochemistry, petrogenesis and tectonic setting of middle Eocene hypabyssal rocks of the Torud–Ahmad Abad magmatic belt: An implication for evolution of the northern branch of Neo-Tethys Ocean in Iran , 2017 .

[8]  A. Zanchi,et al.  The upper Palaeozoic Godar-e-Siah Complex of Jandaq: Evidence and significance of a North Palaeotethyan succession in Central Iran , 2017 .

[9]  S. Bagheri,et al.  Kinematics of the Great Kavir fault inferred from a structural analysis of the Pees Kuh Complex, Jandaq area, central Iran , 2016 .

[10]  T. Huo,et al.  Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton , 2016 .

[11]  S. A. Mazhari Petrogenesis of adakite and high-Nb basalt association in the SW of Sabzevar Zone, NE of Iran: Evidence for slab melt-mantle interaction , 2016 .

[12]  Margarita López Martínez,et al.  The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran , 2016 .

[13]  A. Yassaghi,et al.  Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics , 2015 .

[14]  F. Lucci,et al.  Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in Central Iran, Kuh-e-Sarhangi region (NW Lut Block) , 2015 .

[15]  S. Bokhari,et al.  Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): Implications for the Eastern Neo-Tethys evolution , 2014 .

[16]  S. Rajabi,et al.  Oligocene crustal xenolith‐bearing alkaline basalt from Jandaq area (Central Iran): implications for magma genesis and crustal nature , 2014 .

[17]  P. Monié,et al.  Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran) , 2014 .

[18]  Xu-jie Shu,et al.  Post-orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800-760Ma volcanic rocks , 2012 .

[19]  J. Moyen,et al.  Forty years of TTG research , 2012 .

[20]  G. Torabi Late Permian post‐ophiolitic trondhjemites from Central Iran: a mark of subduction role in growth of Paleozoic continental crust , 2012 .

[21]  J. Moyen The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth , 2011 .

[22]  T. Rooney,et al.  Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? , 2011 .

[23]  M. Santosh,et al.  Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet , 2010 .

[24]  G. Torabi Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central–East Iranian microcontinent confining oceanic crust subduction , 2010 .

[25]  J. Moyen High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature” , 2009 .

[26]  G. Dong,et al.  Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? , 2009 .

[27]  J. Moyen,et al.  The sanukitoid series: magmatism at the Archaean–Proterozoic transition , 2009, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[28]  G. Torabi Subduction-related Eocene shoshonites from the Cenozoic Urumieh-Dokhrat magmatic arc (Qaleh-Khargooshi area, West of the Yazd province, Iran) , 2009, Turkish Journal of Earth Sciences.

[29]  D. Wyman,et al.  Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites , 2008 .

[30]  C. Langmuir,et al.  Adakitic Dacites Formed by Intracrustal Crystal Fractionation of Water-rich Parent Magmas at Nevado de Longaví Volcano (36·2°S; Andean Southern Volcanic Zone, Central Chile) , 2007 .

[31]  C. Macpherson,et al.  Amphibole “sponge” in arc crust? , 2007 .

[32]  M. Wilson,et al.  Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust , 2007 .

[33]  J. Richards,et al.  Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis , 2007 .

[34]  D. Wyman,et al.  Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust , 2007 .

[35]  Shan Gao,et al.  Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications , 2006 .

[36]  Mei-Fu Zhou,et al.  Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China , 2006 .

[37]  M. Thirlwall,et al.  Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines , 2006 .

[38]  P. Castillo An overview of adakite petrogenesis , 2006 .

[39]  Qiang Wang,et al.  Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting , 2005 .

[40]  J. Adam,et al.  Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis , 2005 .

[41]  R. Rudnick,et al.  Recycling lower continental crust in the North China craton , 2004, Nature.

[42]  F. Guo,et al.  Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt , 2004 .

[43]  R. Vannucci,et al.  The dependence of Nb and Ta rutile–melt partitioning on melt composition and Nb/Ta fractionation during subduction processes , 2004 .

[44]  Xiaoming Qu,et al.  Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet , 2004 .

[45]  Q. Zhang,et al.  Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet , 2003 .

[46]  M. Parada,et al.  Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: metallogenic implications , 2003 .

[47]  Robert D. Tucker,et al.  The Saghand Region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana Tectonics , 2003 .

[48]  Zhao Rongsheng,et al.  Post‐collisional Adakitic Porphyries in Tibet: Geochemical and Sr‐Nd‐Pb Isotopic Constraints on Partial Melting of Oceanic Lithosphere and Crust‐Mantle Interaction , 2003 .

[49]  M. Tiepolo,et al.  Growth of early continental crust controlled by melting of amphibolite in subduction zones , 2002, Nature.

[50]  J. Moyen,et al.  Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth , 2002 .

[51]  B. Scaillet,et al.  Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust , 2001, Nature.

[52]  T. Gasparik,et al.  Metasomatic clinopyroxene inclusions in diamonds from the Liaoning Province, China , 2001 .

[53]  M. Gutscher,et al.  Can slab melting be caused by flat subduction , 2000 .

[54]  G. Jenner,et al.  Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas , 2000 .

[55]  H. Martin Adakitic magmas: modern analogues of Archaean granitoids , 1999 .

[56]  R. Solidum,et al.  Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting , 1999 .

[57]  E. Neumann,et al.  Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents , 1998 .

[58]  A. Soesoo A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT‐estimations , 1997 .

[59]  W. McDonough,et al.  The composition of the Earth , 1995 .

[60]  A. M. Abdel-Rahman Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas , 1994 .

[61]  G. Hanson,et al.  Archean High-Mg Granodiorite: A Derivative of Light Rare Earth Element-enriched Monzodiorite of Mantle Origin , 1991 .

[62]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[63]  P. Piccoli,et al.  Tectonic discrimination of granitoids , 1989 .

[64]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[65]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[66]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[67]  R. Kay Aleutian magnesian andesites: Melts from subducted Pacific ocean crust , 1978 .

[68]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[69]  J. Stocklin Structural History and Tectonics of Iran: A Review , 1968 .

[70]  D. Lentz,et al.  Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu–Au–Mo metallogenic potential , 2016 .

[71]  Cai Li,et al.  Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong–Nujiang Ocean , 2015 .

[72]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[73]  Chen Jian-lin Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northern Lhasa Block:Discussion of Tectonic Setting , 2009 .

[74]  J. Anderson,et al.  Thermometers and Thermobarometers in Granitic Systems , 2008 .

[75]  B. Kamber,et al.  Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism , 2007 .

[76]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[77]  M. Drummond,et al.  Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas , 1996, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[78]  P. Wyllie,et al.  Amphibolite dehydration-melting: sorting out the solidus , 1993, Geological Society, London, Special Publications.

[79]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[80]  P. Fort,et al.  A chemical–mineralogical classification of common plutonic rocks and associations , 1983, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[81]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .