Construction of Signals with Favorable Correlation Properties

Correlationis a measure of thesimilarity, orrelatedness, between two phenomena. When properly normalized, the correlation measure is a real number between —1 and +1, where a correlation value of “+1” indicates that the two phenomena are identical, a correlation value of “-1” means that they are diametrically opposite, and a correlation value of “0” means that they are “uncorrelated” — i.e. that they agree exactly as much as they disagree.

[1]  R. Hartley Transmission of information , 1928 .

[2]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  J. Storer,et al.  On binary sequences , 1961 .

[4]  David A. Huffman,et al.  The generation of impulse-equivalent pulse trains , 1962, IRE Trans. Inf. Theory.

[5]  B. Gordon,et al.  Some New Difference Sets , 1962, Canadian Journal of Mathematics.

[6]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[7]  Robert L. Frank,et al.  Polyphase codes with good nonperiodic correlation properties , 1963, IEEE Trans. Inf. Theory.

[8]  S. W. GOLOMB,et al.  Generalized Barker sequences , 1965, IEEE Trans. Inf. Theory.

[9]  Ivan Selin Detection Theory: (A Rand Study) , 1965 .

[10]  R. Gallager Information Theory and Reliable Communication , 1968 .

[11]  G.S. Bloom,et al.  Applications of numbered undirected graphs , 1977, Proceedings of the IEEE.

[12]  Unjeng Cheng Exhaustive Construction of (255, 127, 63)-Cyclic Difference Sets , 1983, J. Comb. Theory, Ser. A.

[13]  Martin Gardner,et al.  Wheels, life, and other mathematical amusements , 1983 .

[14]  S. Golomb,et al.  Constructions and properties of Costas arrays , 1984, Proceedings of the IEEE.

[15]  Solomon W. Golomb,et al.  Algebraic Constructions for Costas Arrays , 1984, J. Comb. Theory, Ser. A.

[16]  J.P. Costas,et al.  A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties , 1983, Proceedings of the IEEE.

[17]  James B. Shearer,et al.  Some new optimum Golomb rulers , 1990, IEEE Trans. Inf. Theory.

[18]  S. Golomb Two-valued sequences with perfect periodic autocorrelation , 1992 .

[19]  Ning Zhang,et al.  Polyphase sequence with low autocorrelations , 1993, IEEE Trans. Inf. Theory.

[20]  Robert A. Scholtz,et al.  Basic Concepts in Information Theory and Coding , 1994 .

[21]  Solomon W. Golomb,et al.  Binary Pseudorandom Sequences of Period 2n-1 with Ideal Autocorrelation , 1998, IEEE Trans. Inf. Theory.

[22]  A. R. Brenner Polyphase Barker sequences up to length 45 with small alphabets , 1998 .

[23]  Apostolos Dollas,et al.  A New Algorithm for Golomb Ruler Derivation and Proof of the 19 Mark Ruler , 1998, IEEE Trans. Inf. Theory.

[24]  H. Petroski Technology and Societies , 1998, American Scientist.

[25]  Solomon W. Golomb,et al.  The Polynomial Model in the Study of Counterexamples to S. Piccard's Theorem , 1998, Ars Comb..

[26]  Dieter Jungnickel,et al.  Difference Sets: An Introduction , 1999 .

[27]  Oscar Moreno Survey of Results on Signal Patterns for Locating One or Multiple Targets , 1999 .

[28]  Solomon W. Golomb,et al.  Exhaustive determination of (1023, 511, 255)-cyclic difference sets , 2001, Math. Comput..