Addressing the Uncertainty in Modeling Watershed Nonpoint Source Pollution

[1]  Xuejun Wang,et al.  Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events. , 2013, Environmental pollution.

[2]  Yi Zheng,et al.  Assessing the value of information for water quality management: a watershed perspective from China , 2013, Environmental Monitoring and Assessment.

[3]  D. Kavetski,et al.  Confronting Input Uncertainty in Environmental Modelling , 2013 .

[4]  Lewis C. Linker,et al.  Using Multiple Watershed Models to Predict Water, Nitrogen, and Phosphorus Discharges to the Patuxent Estuary 1 , 2013 .

[5]  O. Pokrovsky,et al.  Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom. , 2013, Water research.

[6]  Xuejun Wang,et al.  Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events. , 2012, Environmental pollution.

[7]  Lei Chen,et al.  Impact of spatial rainfall variability on hydrology and nonpoint source pollution modeling , 2012 .

[8]  George B. Arhonditsis,et al.  A Bayesian synthesis of predictions from different models for setting water quality criteria , 2012 .

[9]  Mingliang Li,et al.  Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework , 2012 .

[10]  C. Alcaraz,et al.  Spatial and temporal dynamics of suspended load at-a-cross-section: the lowermost Ebro River (Catalonia, Spain). , 2012, Water research.

[11]  Wolfgang Nowak,et al.  Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design , 2012 .

[12]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[13]  George Kuczera,et al.  Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation , 2011 .

[14]  Shengtian Yang,et al.  Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China , 2011 .

[15]  Qian Hong,et al.  Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology , 2011 .

[16]  Yi Zheng,et al.  Uncertainty assessment for watershed water quality modeling: A Probabilistic Collocation Method based approach , 2011 .

[17]  Minxue He,et al.  Corruption of parameter behavior and regionalization by model and forcing data errors: A Bayesian example using the SNOW17 model , 2011 .

[18]  Jeffrey R. Arnold,et al.  Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: Theory and model testing , 2011 .

[19]  D. Krabbenhoft,et al.  Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA , 2011 .

[20]  Zhongwei Liu,et al.  Using HSPF to Model the Hydrologic and Water Quality Impacts of Riparian Land-Use Change in a Small Watershed , 2011 .

[21]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[22]  Dmitri Kavetski,et al.  Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes , 2010 .

[23]  George Kuczera,et al.  A limited‐memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models , 2010 .

[24]  Xianhong Xie,et al.  Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter , 2010 .

[25]  Tyler Jon Smith,et al.  Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework , 2010, Environ. Model. Softw..

[26]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[27]  Xing Wu,et al.  Development and test of the Export Coefficient Model in the Upper Reach of the Yangtze River , 2010 .

[28]  Qian Hong,et al.  Parameter uncertainty analysis of non-point source pollution from different land use types. , 2010, The Science of the total environment.

[29]  Kuolin Hsu,et al.  A sequential Bayesian approach for hydrologic model selection and prediction , 2009 .

[30]  George Kuczera,et al.  Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis , 2009 .

[31]  Keith Beven,et al.  Uncertainty assessment of a process-based integrated catchment model of phosphorus , 2009 .

[32]  Ji Chen,et al.  Simulation of nitrogen and phosphorus loads in the Dongjiang River basin in South China using SWAT , 2009 .

[33]  Kyle R. Mankin,et al.  Comparison of AnnAGNPS and SWAT model simulation results in USDA‐CEAP agricultural watersheds in south‐central Kansas , 2009 .

[34]  Xuejun Wang,et al.  Analytical modeling of polycyclic aromatic hydrocarbon loading and transport via road runoff in an urban region of Beijing, China , 2009 .

[35]  P. Jones,et al.  Impact of rainfall estimation uncertainty on streamflow estimations for catchments Wye and Tyne in the United Kingdom , 2009 .

[36]  Arturo A. Keller,et al.  Stochastic Watershed Water Quality Simulation for TMDL Development – A Case Study in the Newport Bay Watershed 1 , 2008 .

[37]  Cajo J. F. ter Braak,et al.  Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..

[38]  Martyn P. Clark,et al.  Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models , 2008 .

[39]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[40]  Bahram Gharabaghi,et al.  Applicability of AnnAGNPS for Ontario conditions , 2008 .

[41]  Wan Muhd Aminuddin Wan Hussin,et al.  Applications of AnnAGNPS model for soil loss estimation and nutrient loading for Malaysian conditions , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[42]  M. Clayton,et al.  Quantitative comparison of canopy conductance models using a Bayesian approach , 2008 .

[43]  Keith Beven,et al.  So just why would a modeller choose to be incoherent , 2008 .

[44]  C. Neal,et al.  Modelling of phosphorus inputs to rivers from diffuse and point sources. , 2008, The Science of the total environment.

[45]  S. Im,et al.  Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation , 2008 .

[46]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[47]  Carlos Roberto de Souza Filho,et al.  Application of fuzzy logic to the evaluation of runoff in a tropical watershed , 2008, Environ. Model. Softw..

[48]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[49]  Arturo A. Keller,et al.  Uncertainty assessment in watershed‐scale water quality modeling and management: 1. Framework and application of generalized likelihood uncertainty estimation (GLUE) approach , 2007 .

[50]  Arturo A. Keller,et al.  Uncertainty assessment in watershed‐scale water quality modeling and management: 2. Management objectives constrained analysis of uncertainty (MOCAU) , 2007 .

[51]  C. Yoon,et al.  Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions , 2007 .

[52]  Johan Alexander Huisman,et al.  Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions—Model development, sensitivity, and GLUE analysis , 2007 .

[53]  S. Sorooshian,et al.  Multi-model ensemble hydrologic prediction using Bayesian model averaging , 2007 .

[54]  Jeffrey G. Arnold,et al.  The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions , 2007 .

[55]  Bettina Schaefli,et al.  Quantifying hydrological modeling errors through a mixture of normal distributions , 2007 .

[56]  Seok Soon Park,et al.  Design of a water quality monitoring network in a large river system using the genetic algorithm , 2006 .

[57]  Vijay P. Singh,et al.  ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff , 2006 .

[58]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[59]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[60]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[61]  Katri Rankinen,et al.  An application of the GLUE methodology for estimating the parameters of the INCA-N model. , 2006, The Science of the total environment.

[62]  S. Sorooshian,et al.  Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model , 2006, Journal of Hydrology.

[63]  Jun Yu Li,et al.  A simulation-based interval two-stage stochastic model for agricultural non-point source pollution control through land retirement. , 2006, The Science of the total environment.

[64]  Qingyun Duan,et al.  An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction , 2006 .

[65]  Yi Zheng,et al.  Understanding parameter sensitivity and its management implications in watershed‐scale water quality modeling , 2006 .

[66]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[67]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[68]  George F. Pinder,et al.  Space‐time optimization of groundwater quality sampling networks , 2005 .

[69]  Vincent Chaplot,et al.  Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions , 2005 .

[70]  T. H. Robinson,et al.  Steps towards modeling nutrient export in coastal Californian streams with a Mediterranean climate , 2005 .

[71]  Yingqi Zhang,et al.  Least cost design of groundwater quality monitoring networks , 2005 .

[72]  Alberto Montanari,et al.  Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall‐runoff simulations , 2005 .

[73]  Tatiana Borisova,et al.  Value of information for water quality management , 2005 .

[74]  David Scholefield,et al.  Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. , 2005, The Science of the total environment.

[75]  Misgana K. Muleta,et al.  Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model , 2005 .

[76]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[77]  C. Stow,et al.  A predictive approach to nutrient criteria. , 2005, Environmental science & technology.

[78]  G. Freni,et al.  Uncertainty analysis of the influence of rainfall time resolution in the modelling of urban drainage systems , 2005 .

[79]  Henrik Madsen,et al.  An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .

[80]  V. Guinot,et al.  Treatment of precipitation uncertainty in rainfall-runoff modelling: a fuzzy set approach , 2004 .

[81]  W. Bouten,et al.  Towards reduced uncertainty in catchment nitrogen modelling: quantifying the effect of field observation uncertainty on model calibration , 2004 .

[82]  Ni-Bin Chang,et al.  Optimal Expansion of Water Quality Monitoring Network by Fuzzy Optimization Approach , 2004, Environmental monitoring and assessment.

[83]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[84]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[85]  U. Aswathanarayana,et al.  Assessing the TMDL Approach to Water Quality Management , 2001 .

[86]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[87]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[88]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[89]  S. Lek,et al.  Predicting stream nitrogen concentration from watershed features using neural networks , 1999 .

[90]  Robert A. Goldstein,et al.  DECISION SUPPORT SYSTEM FOR TOTAL MAXIMUM DAILY LOAD , 1999 .

[91]  B. Bates,et al.  A Bayesian Approach to parameter estimation and pooling in nonlinear flood event models , 1999 .

[92]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[93]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[94]  E. Martí,et al.  Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams , 1998 .

[95]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[96]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[97]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[98]  Penny J Johnes,et al.  Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach , 1996 .

[99]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[100]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[101]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[102]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[103]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[104]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[105]  Giuliano Di Baldassarre,et al.  Data errors and hydrological modelling: The role of model structure to propagate observation uncertainty , 2013 .

[106]  Puneet Srivastava,et al.  DETERMINING NUTRIENT AND SEDIMENT CRITICAL SOURCE AREAS WITH SWAT: EFFECT OF LUMPED CALIBRATION , 2011 .

[107]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[108]  Xiaoyan Wang Management of agricultural nonpoint source pollution in China: current status and challenges. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[109]  Narendra Singh Raghuwanshi,et al.  Runoff and Sediment Yield Modeling using Artificial Neural Networks: Upper Siwane River, India , 2006 .

[110]  A. Saleh,et al.  EVALUATION OF SWAT AND HSPF WITHIN BASINS PROGRAM FOR THE UPPER NORTH BOSQUE RIVER WATERSHED IN CENTRAL TEXAS , 2004 .

[111]  D. K. Borah,et al.  WATERSHED-SCALE HYDROLOGIC AND NONPOINT-SOURCE POLLUTION MODELS: REVIEW OF MATHEMATICAL BASES , 2003 .

[112]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[113]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .