Tin in mantle-derived rocks: Constraints on Earth evolution

[1]  A. Hofmann,et al.  Nb-Th-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution , 1991 .

[2]  W. McDonough,et al.  Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths , 1989, Nature.

[3]  R. Jeanloz,et al.  Simulating the core‐mantle boundary: An experimental study of high‐pressure reactions between silicates and liquid iron , 1989 .

[4]  K. Govindaraju,et al.  1989 COMPILATION OF WORKING VALUES AND SAMPLE DESCRIPTION FOR 272 GEOSTANDARDS , 1989 .

[5]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[6]  R. Loss,et al.  The solar system abundance of tin , 1989 .

[7]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[8]  T. Irifune,et al.  Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements , 1988 .

[9]  K. Jochum,et al.  Multi-element analysis by isotope dilution-spark source mass spectrometry (ID-SSMS) , 1988 .

[10]  W. McDonough,et al.  The southeast Australian lithospheric mantle: isotopic and geochemical constraints on its growth and evolution , 1987 .

[11]  W. Leeman,et al.  Isotopic constraints on the origin of Hawaiian lavas from the Maui Volcanic Complex, Hawaii , 1987, Nature.

[12]  E. Ito,et al.  The O, Sr, Nd and Pb isotope geochemistry of MORB , 1987 .

[13]  H. Newsom,et al.  Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth's core , 1986 .

[14]  P. Stille,et al.  Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source , 1986 .

[15]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[16]  W. White,et al.  Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints , 1986 .

[17]  E. Hegner,et al.  Nd–Sr–Pb isotope constraints on the sources of West Maui volcano, Hawaii , 1986, Nature.

[18]  B. Weaver,et al.  Empirical approach to estimating the composition of the continental crust , 1984, Nature.

[19]  H. Newsom,et al.  The depletion of siderophile elements in the Earth's mantle: new evidence from molybdenum and tungsten , 1984 .

[20]  A. Hofmann,et al.  K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle , 1983, Nature.

[21]  D. L. Anderson Chemical composition of the mantle , 1983 .

[22]  P. Stille,et al.  Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts , 1983, Nature.

[23]  S. Taylor,et al.  Geochemical application of spark-source mass spectrography , 1983 .

[24]  B. Dupré,et al.  Chemical aspects of the formation of the core , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  H. Wänke Constitution of terrestrial planets , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  H. Knab The distribution of trace elements in carbonaceous chondrites , 1981 .

[27]  G. Davies Earth's neodymium budget and structure and evolution of the mantle , 1981, Nature.

[28]  W. White,et al.  The petrology and geochemistry of the Azores Islands , 1979 .

[29]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[30]  W. Dickinson,et al.  Petrogenesis of Lavas from Western Samoa , 1972 .

[31]  E. Whittaker,et al.  Ionic radii for use in geochemistry , 1970 .

[32]  D. Shaw Trace element fractionation during anatexis , 1970 .

[33]  S. Taylor Trace element abundances and the chondritic Earth model , 1964 .

[34]  H. Hamaguchi,et al.  The geochemistry of tin , 1964 .

[35]  H. Newsom,et al.  Chemical fractionation during formation of the Earth's core and continental crust: clues from As, Sb, W, and Mo. , 1990 .

[36]  H. Newsom Accretion and core formation in the Earth: evidence from siderophile elements. , 1990 .

[37]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[38]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[39]  C. Sapienza,et al.  ‘Brain-specific’ transcription and evolution of the identifier sequence , 1986, Nature.

[40]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[41]  H. Wänke,et al.  Mantle Chemistry and Accretion History of the Earth , 1984 .

[42]  H. Puchelt,et al.  Petrogenetic implications of tholeiitic basalt glasses from the East Pacific Rise and the Galápagos Spreading Center , 1983 .

[43]  C. Chou Fractionation of siderophile elements in the Earth''s upper mantle , 1978 .

[44]  D. Swanson,et al.  Chemical compositions of Kilauea east-rift lava, 1968–1971 , 1975 .

[45]  T. Vallier,et al.  A Catalog of the Major Element Chemistry of Abyssal Volcanic Glasses , 1974 .

[46]  E. Anders,et al.  Bulk compositions of the moon and earth, estimated from meteorites , 1974 .

[47]  H. Onishi,et al.  Meteoritic and terrestrial abundance of tin , 1957 .