Evolutive algorithm for spectral handoff prediction in cognitive wireless networks

Context: Meta-heuristic algorithms have received considerable attention in the solution of spectrum assignment problems since they have proven to be efficient with lower computational load and complexity and fast execution time in complex applications. Genetic algorithms are meta-heuristic optimization models inspired in the process of genetics and evolution that can offer local or global optimal solutions; their implementation in cognitive radio has led to using old techniques, generate new models and formulate hybrid structures. Objective: This work proposes a spectral handoff prediction using evolutive algorithms and the multivariable approach of fuzzy feedback analytic hierarchic process (FFAHP). Method: To develop the proposed model, an availability matrix is generated through a genetic algorithm which is used as training strategy; the evaluation of the algorithm is performed for Wi-Fi technology with a 500-channel spectral occupation of real data and a transmission time of 10 minutes. Results: Results are summarized in five evaluation metrics: average number of accumulated failed handoffs, average number of successful handoffs, average bandwidth, cumulative average delay and cumulative average throughput. 674 Diego Giral, Cesar Hernández and Hans Marquez Conclusion: According to the metrics obtained through simulations, the proposed strategy is efficient and improves performance in terms of spectral mobility in cognitive radio networks.

[1]  Karla Espriella Fernandez OPTIMIZACION MEDIANTE ALGORITMOS GENETICOS: APLICACION A LA LAMINACION EN CALIENTE , 2009 .

[2]  Edwin Rivas Trujillo,et al.  Elementos Fundamentales que Componen la Radio Cognitiva y Asignación de Bandas Espectrales , 2015 .

[3]  Hojjat Salehinejad,et al.  A metaheuristic approach to spectrum assignment for opportunistic spectrum access , 2010, 2010 17th International Conference on Telecommunications.

[4]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[5]  Ian F. Akyildiz,et al.  CRAHNs: Cognitive radio ad hoc networks , 2009, Ad Hoc Networks.

[6]  Javad Khazaii,et al.  Genetic Algorithm Optimization , 2016 .

[7]  Vibhuti Rana,et al.  Simulation of QoS parameters in cognitive radio system using SMO algorithm , 2017, 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT).

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Fatiha Mrabti,et al.  Spectrum allocation using genetic algorithm in cognitive radio networks , 2015, 2015 Third International Workshop on RFID And Adaptive Wireless Sensor Networks (RAWSN).

[10]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[11]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[12]  José Luis Verdegay Galdeano,et al.  Algoritmos genéticos: fundamentos, extensiones y aplicaciones , 1995 .

[13]  Derek H. Smith,et al.  Assignment of frequency lists in frequency hopping networks , 2005, IEEE Transactions on Vehicular Technology.

[14]  Ilyong Chung,et al.  Spectrum mobility in cognitive radio networks , 2012, IEEE Communications Magazine.

[15]  Ian F. Akyildiz,et al.  A survey on spectrum management in cognitive radio networks , 2008, IEEE Communications Magazine.

[16]  D. Werner,et al.  Anatomy of a Genetic Algorithm , 2007 .

[17]  R S Milton Aldás,et al.  Modelo origen destino para estimar el flujo de tráfico usando algoritmos genéticos , 2014 .

[18]  César Augusto Hernández-Suárez,et al.  Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks , 2016 .

[19]  Victor O. K. Li,et al.  Power-Controlled Cognitive Radio Spectrum Allocation with Chemical Reaction Optimization , 2013, IEEE Transactions on Wireless Communications.

[20]  Mona Shokair,et al.  Maximization of minimal throughput using genetic algorithm in MIMO underlay cognitive radio networks , 2016, 2016 33rd National Radio Science Conference (NRSC).

[21]  An He,et al.  A Survey of Artificial Intelligence for Cognitive Radios , 2010, IEEE Transactions on Vehicular Technology.

[22]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..