Two isomers of methanocarba (MC) thymidine (T), one an effective antiherpes agent with the pseudosugar moiety locked in the North (N) hemisphere of the pseudorotational cycle (1a, N-MCT) and the other an inactive isomer locked in the antipodean South (S) conformation (1b, S-MCT) were used to determine whether kinases and polymerases discriminate between their substrates on the basis of sugar conformation. A combined solid-state and solution conformational analysis of both compounds, coupled with the direct measurement of mono-, di-, and triphosphate levels in control cells, cells infected with the Herpes simplex virus, or cells transfected with the corresponding viral kinase gene (HSV-tk), suggests that kinases prefer substrates that adopt the S sugar conformation. On the other hand, the cellular DNA polymerase(s) of a murine tumor cell line transfected with HSV-tk incorporated almost exclusively the triphosphate of the locked N conformer (N-MCTTP), notwithstanding the presence of higher triphosphate levels of the S-conformer (S-MCTTP).