Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners

We show that for every n-point metric space M and positive integer k, there exists a spanning tree T with unweighted diameter O(k) and weight w(T) = O(k ldr n1/k) ldr w(MST(M)), and a spanning tree T' with weight w(T') = O(k) ldr w(MST(M)) and unweighted diameter O(k ldr n1/k). Moreover, there is a designated point rt such that for every other point v, both distT(rt, v) and distT(rt, v) are at most (1 + epsiv) ldr distM(rt,v), for an arbitrarily small constant epsiv > 0. We prove that the above tradeoffs are tight up to constant factors in the entire range of parameters. Furthermore, our lower bounds apply to a basic one-dimensional Euclidean space. Finally, our lower bounds for the particular case of unweighted diameter O(log n) settle a long-standing open problem in Computational Geometry.

[1]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[2]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[3]  James R. Lee,et al.  An improved approximation ratio for the minimum linear arrangement problem , 2007, Inf. Process. Lett..

[4]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[5]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[6]  Guy Kortsarz,et al.  Approximating the Weight of Shallow Steiner Trees , 1999, Discret. Appl. Math..

[7]  Ernst Althaus,et al.  Approximating k-hop minimum-spanning trees , 2005, Oper. Res. Lett..

[8]  Bernard Chazelle,et al.  The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..

[9]  R. Ravi,et al.  Bicriteria Network Design Problems , 1998, J. Algorithms.

[10]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[11]  Sören Laue,et al.  Approximating k-hop Minimum Spanning Trees in Euclidean Metrics , 2007, CCCG.

[12]  Mohammad Taghi Hajiaghayi,et al.  L22 Spreading Metrics for Vertex Ordering Problems , 2006, SODA.

[13]  Uri Zwick,et al.  All pairs almost shortest paths , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[14]  Sudipto Guha,et al.  Approximating a finite metric by a small number of tree metrics , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[16]  Yossi Azar,et al.  A generic scheme for building overlay networks in adversarial scenarios , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[17]  T-H. Hubert Chan,et al.  Small hop-diameter sparse spanners for doubling metrics , 2006, SODA 2006.

[18]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[19]  Baruch Awerbuch,et al.  Cost-sensitive analysis of communication protocols , 1990, PODC '90.

[20]  Jason Cong,et al.  Performance-driven global routing for cell based ICs , 1991, [1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[21]  David Peleg,et al.  Approximate Hierarchical Facility Location and Applications to the Shallow Steiner Tree and Range Assignment Problems , 2006, CIAC.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  David R. Karger,et al.  Prim-Dijkstra tradeoffs for improved performance-driven routing tree design , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[25]  Andrew Chi-Chih Yao,et al.  Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.

[26]  R. Ravi,et al.  Spanning trees short or small , 1994, SODA '94.

[27]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[28]  Pankaj K. Agarwal,et al.  Lower bound for sparse Euclidean spanners , 2005, SODA '05.

[29]  Boaz Patt-Shamir,et al.  Minimum-Weight Spanning Tree Construction in O(log log n) Communication Rounds , 2005, SIAM J. Comput..

[30]  Satish Rao,et al.  New approximation techniques for some ordering problems , 1998, SODA '98.

[31]  Samir Khuller,et al.  Approximating the minimum equivalent digraph , 1994, SODA '94.

[32]  Ittai Abraham,et al.  Compact routing on euclidian metrics , 2004, PODC '04.

[33]  J. Cong,et al.  Provably good algorithms for performance-driven global routing , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[34]  Gurdip Singh,et al.  Leader Election in Complete Networks , 1997, SIAM J. Comput..

[35]  Jeffrey M. Jaffe Distributed Multi-Destination Routing: The Constraints of Local Information , 1985, SIAM J. Comput..

[36]  Jason Cong,et al.  Provably good performance-driven global routing , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[37]  K. Bharath-Kumar,et al.  Routing to Multiple Destinations in Computer Networks , 1983, IEEE Trans. Commun..

[38]  S. Rao Kosaraju,et al.  A decomposition of multi-dimensional point-sets with applications to k-nearest-neighbors and n-body potential fields (preliminary version) , 1992, STOC '92.

[39]  David Peleg,et al.  Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.

[40]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[41]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[42]  Edith Cohen,et al.  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 1994, STOC '94.

[43]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[44]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[45]  Sudipto Guha,et al.  Approximation algorithms for directed Steiner problems , 1999, SODA '98.

[46]  Luís Gouveia,et al.  Network flow models for designing diameter‐constrained minimum‐spanning and Steiner trees , 2003, Networks.

[47]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[48]  G. Das,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1994, SCG.

[49]  Erik D. Demaine,et al.  Tight bounds for the partial-sums problem , 2004, SODA '04.

[50]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.