Very High-Resolution Morphometry Using Mass-Preserving Deformations and HAMMER Elastic Registration

This article presents a very high-resolution voxel-based morphometric method, by using a mass-preserving deformation mechanism and a fully automated spatial normalization approach, referred to as HAMMER. By using a hierarchical attribute-based deformation strategy, HAMMER partly overcomes limitations of several existing spatial normalization methods, and it achieves a level of accuracy that makes possible morphometric measurements of spatial specificity close to the voxel dimensions. The proposed method is validated by a series of experiments, with both simulated and real brain images.

[1]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[2]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[3]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[4]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[5]  Karl J. Friston,et al.  Identifying Global Anatomical Differences: Deformation-Based Morphometry , 1998, NeuroImage.

[6]  James C. Gee,et al.  Design of a Statistical Model of Brain Shape , 1997, IPMI.

[7]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[8]  Paul M. Thompson,et al.  Detecting Disease-Specific Patterns of Brain Structure Using Cortical Pattern Matching and a Population-Based Probabilistic Brain Atlas , 2001, IPMI.

[9]  James C. Gee,et al.  Atlas warping for brain morphometry , 1998, Medical Imaging.

[10]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Louis Collins,et al.  Retrospective Evaluation of Inter-subject Brain Registration , 2001, MICCAI.

[12]  D. Louis Collins,et al.  Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis , 1991, Medical Imaging.

[13]  Nicholas Ayache,et al.  Automatic registration of 3D images using surface curvature , 1992, Optics & Photonics.

[14]  Takeo Kanade,et al.  3-D Deformable Registration of Medical Images Using a Statistical Atlas , 1999, MICCAI.

[15]  Christos Davatzikos,et al.  Voxel-Based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy , 2001, NeuroImage.

[16]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[17]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[18]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[19]  Karl J. Friston,et al.  A Voxel-Based Method for the Statistical Analysis of Gray and White Matter Density Applied to Schizophrenia , 1995, NeuroImage.

[20]  Ruzena Bajcsy,et al.  Matching structural images of the human brain using statistical and geometrical image features , 1994, Other Conferences.

[21]  Shyr Yu,et al.  Registration of physical space to laparoscopic image space for use in minimally invasive hepatic surgery , 2000, IEEE Transactions on Medical Imaging.

[22]  Lawrence H. Staib,et al.  Physical model-based non-rigid registration incorporating statistical shape information , 2000, Medical Image Anal..

[23]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[24]  Jean-Philippe Thirion,et al.  Non-rigid matching using demons , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Max A. Viergever,et al.  Measuring biological shape using geometry-based shape transformations , 2001, Image Vis. Comput..

[26]  C Davatzikos,et al.  Mapping image data to stereotaxic spaces: Applications to brain mapping , 1998, Human brain mapping.

[27]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[28]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[29]  C Davatzikos,et al.  Sex differences in anatomic measures of interhemispheric connectivity: correlations with cognition in women but not men. , 1998, Cerebral cortex.

[30]  Jundong Liu,et al.  Robust Multimodal Image Registration Using Local Frequency Representations , 2001, IPMI.

[31]  Jerry L Prince,et al.  A computerized approach for morphological analysis of the corpus callosum. , 1996, Journal of computer assisted tomography.

[32]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[33]  S. Resnick,et al.  An image-processing system for qualitative and quantitative volumetric analysis of brain images. , 1998, Journal of computer assisted tomography.

[34]  Patrick Pérez,et al.  Medical Image Registration with Robust Multigrid Techniques , 1999, MICCAI.

[35]  Karl Rohr,et al.  Image Registration Based on Thin-Plate Splines and Local Estimates of Anisotropic Landmark Localization Uncertainties , 1998, MICCAI.

[36]  R. Bajcsy,et al.  A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. , 1983, Journal of computer assisted tomography.

[37]  Michael I. Miller,et al.  On The Geometry and Shape of Brain Sub-Manifolds , 1997, Int. J. Pattern Recognit. Artif. Intell..

[38]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[39]  Robert T. Schultz,et al.  A Unified Feature Registration Method for Brain Mapping , 2001, IPMI.

[40]  Gary E. Christensen,et al.  Consistent Linear-Elastic Transformations for Image Matching , 1999, IPMI.

[41]  Nicholas Ayache,et al.  A General Scheme for Automatically Building 3D Morphometric Anatomical Atlases: application to a Sku , 1995 .

[42]  Christos Davatzikos,et al.  Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models , 1997, Comput. Vis. Image Underst..

[43]  U. Grenander,et al.  Statistical methods in computational anatomy , 1997, Statistical methods in medical research.

[44]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Nicholas Ayache,et al.  A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas , 1998, Medical Image Anal..

[46]  Nick C Fox,et al.  Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. , 1998, Journal of computer assisted tomography.

[47]  Michael I. Miller,et al.  Hierarchical brain mapping via a generalized Dirichlet solution for mapping brain manifolds , 1995, Optics & Photonics.