Feedback boundary control problems for linear semigroups

AbstractWe investigate the abstract Cauchy problem $$\frac{d}{{dt}}x(t) = A(I + B)x(t)$$ and apply the obtained generation results to feedback boundary control problems.

[1]  F. Smithies Linear Operators , 2019, Nature.

[2]  Andrew J. Majda,et al.  Initial‐boundary value problems for hyperbolic equations with uniformly characteristic boundary , 1975 .

[3]  V. Barbu Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .

[4]  Kurt Friedrichs,et al.  Boundary value problems for first order operators , 1965 .

[5]  R. Phillips,et al.  Local boundary conditions for dissipative symmetric linear differential operators , 1960 .

[6]  Jeffrey Rauch,et al.  L2 is a continuable initial condition for kreiss' mixed problems , 1972 .

[7]  W. Desch,et al.  On relatively bounded perturbations of linear $C_0$-semigroups , 1984 .

[8]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[9]  R. Triggiani,et al.  An L 2 theory for the quadratic optimal cost problem of hyperbolic equations with control in the dirichlet B.C. , 1983 .

[10]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[11]  Tosio Kato Perturbation theory for linear operators , 1966 .

[12]  R. Triggiani,et al.  Regularity of hyperbolic equations underL2(0,T; L2(Γ))-Dirichlet boundary terms , 1983 .

[13]  Richard B. Vinter,et al.  Optimal Control of Nonsymmetric Hyperbolic Systems in n Variables on the Half-Space , 1977 .

[14]  J. M. Ball,et al.  Shorter Notes: Strongly Continuous Semigroups, Weak Solutions, and the Variation of Constants Formula , 1977 .

[15]  J. Ball Strongly continuous semigroups, weak solutions, and the variation of constants formula , 1977 .

[16]  R. Triggiani,et al.  Boundary feedback stabilization problems for hyperbolic equations , 1983 .

[17]  Jacques Chazarain,et al.  Introduction à la théorie des équations aux dérivées partielles linéaires , 1981 .

[18]  Irena Lasiecka,et al.  A cosine operator approach to modelingL2(0,T; L2 (Γ))—Boundary input hyperbolic equations , 1981 .