Quadratic Inference Functions for Varying‐Coefficient Models with Longitudinal Data

Summary Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this article, we propose an efficient estimation procedure for varying‐coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and deal directly with both continuous and discrete response longitudinal data under the framework of generalized linear models. The proposed approach yields a more efficient estimator than the generalized estimation equation approach when the working correlation is misspecified. For varying‐coefficient models, it is often of interest to test whether coefficient functions are time varying or time invariant. We propose a unified and efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test statistics have an asymptotic chi‐squared distribution. In addition, the goodness‐of‐fit test is applied to test whether the model assumption is satisfied. The corresponding test is also useful for choosing basis functions and the number of knots for regression spline models in conjunction with the model selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte Carlo simulation studies. The proposed methodology is illustrated by the analysis of an acquired immune deficiency syndrome (AIDS) data set.

[1]  R. Pearl Biometrics , 1914, The American Naturalist.

[2]  V. P. Godambe An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .

[3]  C. L. Mallows Some comments on C_p , 1973 .

[4]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[5]  R. L. Dekock Some Comments , 2021 .

[6]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[7]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[8]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[9]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[10]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[11]  Martin Crowder,et al.  On the use of a working correlation matrix in using generalised linear models for repeated measures , 1995 .

[12]  C. Mallows More comments on C p , 1995 .

[13]  C. Park,et al.  A Simple Method for Generating Correlated Binary Variates , 1996 .

[14]  C. Heyde,et al.  Quasi-likelihood and its application , 1997 .

[15]  Yuedong Wang Smoothing Spline Models with Correlated Random Errors , 1998 .

[16]  Yuedong Wang Mixed effects smoothing spline analysis of variance , 1998 .

[17]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[18]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[19]  C. H. Oh,et al.  Some comments on , 1998 .

[20]  Yuedong Wang,et al.  Mixed-Effects Smoothing Spline ANOVA , 1998 .

[21]  William Alexander,et al.  Nonparametric Smoothing and Lack-of-Fit Tests , 1999, Technometrics.

[22]  Donald W. K. Andrews,et al.  Consistent Moment Selection Procedures for Generalized Method of Moments Estimation , 1999 .

[23]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[24]  Matt P. Wand,et al.  Miscellanea. On the optimal amount of smoothing in penalised spline regression , 1999 .

[25]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[26]  Matt P. Wand,et al.  A Comparison of Regression Spline Smoothing Procedures , 2000, Comput. Stat..

[27]  G Molenberghs,et al.  GEE with Gaussian Estimation of the Correlations When Data Are Incomplete , 2000, Biometrics.

[28]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[29]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[30]  Colin L. Mallows,et al.  Some Comments on Cp , 2000, Technometrics.

[31]  David Ruppert,et al.  Theory & Methods: Spatially‐adaptive Penalties for Spline Fitting , 2000 .

[32]  Yuhong Yang,et al.  Nonparametric Regression with Correlated Errors , 2001 .

[33]  Torben Martinussen,et al.  Sampling Adjusted Analysis of Dynamic Additive Regression Models for Longitudinal Data , 2001 .

[34]  Chin-Tsang Chiang,et al.  Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables , 2001 .

[35]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[36]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[37]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[38]  Naisyin Wang Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .

[39]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[40]  D. Ruppert,et al.  Root-n Consistency of Penalized Spline Estimator for Partially Linear Single-Index Models under General Euclidean Space , 2003 .

[41]  Bruce G. Lindsay,et al.  Building adaptive estimating equations when inverse of covariance estimation is difficult , 2003 .

[42]  R. Carroll,et al.  Semiparametric Regression Splines in Matched Case‐Control Studies , 2003, Biometrics.

[43]  Daowen Zhang Generalized Linear Mixed Models with Varying Coefficients for Longitudinal Data , 2004, Biometrics.

[44]  David Ruppert,et al.  Estimating the Interest Rate Term Structure of Corporate Debt With a Semiparametric Penalized Spline Model , 2004 .

[45]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[46]  R. Carroll,et al.  Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data , 2004 .

[47]  P. Hall,et al.  Theory for penalised spline regression , 2005 .

[48]  M. Wand,et al.  Exact likelihood ratio tests for penalised splines , 2005 .

[49]  R. Carroll,et al.  Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .

[50]  Erich L. Lehmann On likelihood ratio tests , 2006 .