Likelihood-based classification of cryo-EM images using FREALIGN.

We describe an implementation of maximum likelihood classification for single particle electron cryo-microscopy that is based on the FREALIGN software. Particle alignment parameters are determined by maximizing a joint likelihood that can include hierarchical priors, while classification is performed by expectation maximization of a marginal likelihood. We test the FREALIGN implementation using a simulated dataset containing computer-generated projection images of three different 70S ribosome structures, as well as a publicly available dataset of 70S ribosomes. The results show that the mixed strategy of the new FREALIGN algorithm yields performance on par with other maximum likelihood implementations, while remaining computationally efficient.

[1]  Nikolaus Grigorieff,et al.  FREALIGN: high-resolution refinement of single particle structures. , 2007, Journal of structural biology.

[2]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[3]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[4]  J. Frank,et al.  Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. , 2009, Journal of structural biology.

[5]  Marina V. Rodnina,et al.  Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy , 2010, Nature.

[6]  S. Harrison,et al.  Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM , 2009, Proceedings of the National Academy of Sciences.

[7]  J Frank,et al.  Studying ribosome structure by electron microscopy and computer-image processing. , 1988, Methods in enzymology.

[8]  S. Provencher,et al.  Three-dimensional reconstruction from electron micrographs of disordered specimens. II. Implementation and results. , 1988, Ultramicroscopy.

[9]  Roberto Marabini,et al.  Maximum-likelihood multi-reference refinement for electron microscopy images. , 2005, Journal of molecular biology.

[10]  J Bernard Heymann,et al.  Bsoft: image processing and molecular modeling for electron microscopy. , 2007, Journal of structural biology.

[11]  A. Cheng,et al.  Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. , 2012, Structure.

[12]  Nikolaus Grigorieff,et al.  Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. , 2011, Current opinion in structural biology.

[13]  H. Stark,et al.  Structural mapping of spliceosomes by electron microscopy. , 2009, Current opinion in structural biology.

[14]  Dominika Elmlund,et al.  Ab initio structure determination from electron microscopic images of single molecules coexisting in different functional states. , 2010, Structure.

[15]  Sjors H. W. Scheres A Bayesian view on cryo-EM structure determination , 2012, ISBI.

[16]  N. Grigorieff,et al.  Noise bias in the refinement of structures derived from single particles. , 2004, Ultramicroscopy.

[17]  Catherine L Lawson,et al.  Unified data resource for cryo-EM. , 2010, Methods in enzymology.

[18]  F. Thon Notizen: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung , 1966 .

[19]  Joachim Frank,et al.  Classification by bootstrapping in single particle methods , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[20]  Pawel A Penczek,et al.  Iterative stable alignment and clustering of 2D transmission electron microscope images. , 2012, Structure.

[21]  Wei Zhang,et al.  GTPase activation of elongation factor EF‐Tu by the ribosome during decoding , 2009, The EMBO journal.

[22]  Christopher Irving,et al.  A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. , 2010, Journal of structural biology.

[23]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[24]  E. Orlova,et al.  Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. , 2008, Journal of structural biology.

[25]  Chao Yang,et al.  Estimation of variance in single-particle reconstruction using the bootstrap technique. , 2006, Journal of structural biology.

[26]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[27]  N Grigorieff,et al.  Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. , 1998, Journal of molecular biology.

[28]  Paul C. Whitford,et al.  1 Supplemental Information , 2008 .

[29]  N. Grigorieff,et al.  Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter. , 2012, Journal of structural biology.

[30]  A. Cheng,et al.  Beam-induced motion of vitrified specimen on holey carbon film. , 2012, Journal of structural biology.

[31]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..

[32]  Sjors H W Scheres,et al.  Classification of structural heterogeneity by maximum-likelihood methods. , 2010, Methods in enzymology.

[33]  Jitendra Malik,et al.  Automated multi-model reconstruction from single-particle electron microscopy data. , 2010, Journal of structural biology.

[34]  José María Carazo,et al.  Fast maximum-likelihood refinement of electron microscopy images , 2005, ECCB/JBI.

[35]  Pawel A Penczek,et al.  Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. , 2009, Current opinion in structural biology.

[36]  Xiangyan Zeng,et al.  A maximum likelihood approach to two-dimensional crystals. , 2007, Journal of structural biology.

[37]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[38]  Joachim Frank,et al.  Structure and dynamics of a processive Brownian motor: the translating ribosome. , 2010, Annual review of biochemistry.

[39]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[40]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[41]  John E. Johnson,et al.  Ab initio reconstruction and experimental design for cryo electron microscopy , 2000, IEEE Trans. Inf. Theory.

[42]  Clinton S Potter,et al.  ACE: automated CTF estimation. , 2005, Ultramicroscopy.

[43]  Jose-Maria Carazo,et al.  An introduction to maximum-likelihood methods in cryo-EM. , 2010, Methods in enzymology.

[44]  R. Glaeser,et al.  Electron Diffraction of Frozen, Hydrated Protein Crystals , 1974, Science.

[45]  M. Heel,et al.  Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. , 1985, The EMBO journal.

[46]  S. Provencher,et al.  Three-dimensional reconstruction from electron micrographs of disordered specimens. I. Method. , 1988, Ultramicroscopy.

[47]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[48]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[49]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[50]  Clinton S Potter,et al.  Visualizing Ribosome Biogenesis: Parallel Assembly Pathways for the 30S Subunit , 2010, Science.

[51]  José María Carazo,et al.  Image processing for electron microscopy single-particle analysis using XMIPP , 2008, Nature Protocols.

[52]  F. Sigworth A maximum-likelihood approach to single-particle image refinement. , 1998, Journal of structural biology.