Point Target Classification via Fast Lossless and Sufficient $\Omega$–$\Psi$ –$\Phi$ Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data

The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.

[1]  M. El-Arini,et al.  Polarization dependence in electromagnetic inverse problems , 1981 .

[2]  Houra Rais,et al.  Derivation of a Signed Cameron Decomposition Asymmetry Parameter and Relationship of Cameron to Huynen Decomposition Parameters , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  Ridha Touzi,et al.  Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[5]  R. Bates,et al.  Effects of magneto-ionic propagation on the polarization scattering matrix , 1965 .

[6]  G. A. Hurd,et al.  IEEE Standard Test Procedures for Antennas , 1980 .

[7]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Marco Martorella,et al.  Lossless and Sufficient $\Psi$ -Invariant Decomposition of Random Reciprocal Target , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[10]  Ernst Lüneburg,et al.  Aspects of Radar Polarimetry , 2002 .

[11]  Viswanathan N. Bringi,et al.  Specular null polarization theory: applications to radar meteorology , 1996, IEEE Trans. Geosci. Remote. Sens..

[12]  Hiroshi Kimura,et al.  Calibration of Polarimetric PALSAR Imagery Affected by Faraday Rotation Using Polarization Orientation , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Wolfgang-Martin Boerner,et al.  Comments, with reply, on "On foundations of radar polarimetry" , 1986 .

[14]  M. Davidovitz,et al.  Extension of Kennaugh's optimal polarization concept to the asymmetric scattering matrix case , 1986 .

[15]  Thomas L. Ainsworth,et al.  The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  J. Copeland Radar Target Classification by Polarization Properties , 1960, Proceedings of the IRE.

[17]  J. Huynen Phenomenological theory of radar targets , 1970 .

[18]  Jean-Claude Souyris,et al.  Polarimetric Analysis of Bistatic SAR Images From Polar Decomposition: A Quaternion Approach , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Houra Rais,et al.  Conservative Polarimetric Scatterers and Their Role in Incorrect Extensions of the Cameron Decomposition , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Yoshio Yamaguchi,et al.  On the basic principles of radar polarimetry: the target characteristic polarization state theory of Kennaugh, Huynen's polarization fork concept, and its extension to the partially polarized case , 1991 .

[21]  Thomas L. Ainsworth,et al.  Polarimetric Analysis of Radar Signature of a Manmade Structure , 2006, IEEE Geosci. Remote. Sens. Lett..

[22]  Marco Martorella,et al.  Classification of Man-Made Targets via Invariant Coherency-Matrix Eigenvector Decomposition of Polarimetric SAR/ISAR Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Alexander B. Kostinski,et al.  On foundations of radar polarimetry , 1986 .

[24]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[25]  E. Kennaugh Polarization properties of radar reflections , 1952 .

[26]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[27]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[28]  Anthony Freeman,et al.  Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Leo P. Ligthart,et al.  Algorithms for estimating the complete group of polarization invariants of the scattering matrix (SM) based on measuring all SM elements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Marco Martorella,et al.  Polarimetric ISAR autofocusing , 2008 .

[31]  Z. H. Czyz Polish radar technology. VII : Polarization properties of nonsymmetrical matrices―A geometrical interpretation , 1991 .

[32]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[33]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[34]  S. H. Bickel Some invariant properties of the polarization scattering matrix , 1965 .

[35]  Søren Nørvang Madsen,et al.  EMISAR: an absolutely calibrated polarimetric L- and C-band SAR , 1998, IEEE Trans. Geosci. Remote. Sens..

[36]  R. McGuinness,et al.  Correction of propagation effects in s-band circular polarisation-diversity radars , 1987 .

[37]  G. Wanielik,et al.  Polarimetric SAR processing using the polar decomposition of the scattering matrix , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[38]  Thomas L. Ainsworth,et al.  Assessment of System Polarization Quality for Polarimetric SAR Imagery and Target Decomposition , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Hong Zhang,et al.  A unified three-component scattering model for polarimetric coherent target decomposition , 2012 .

[40]  Lionel Bombrun Extension of the Target Scattering Vector Model to the bistatic case , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[41]  S. Cloude Target decomposition theorems in radar scattering , 1985 .

[42]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[43]  R. Keith Raney,et al.  The Lunar Mini-RF Radars: Hybrid Polarimetric Architecture and Initial Results , 2011, Proceedings of the IEEE.

[44]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[45]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[46]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[47]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[48]  C. D. Graves Radar Polarization Power Scattering Matrix , 1956, Proceedings of the IRE.

[49]  Ridha Touzi,et al.  Characterization of target symmetric scattering using polarimetric SARs , 2002, IEEE Trans. Geosci. Remote. Sens..

[50]  S. H. Bickel,et al.  Error analysis, calibration, and the polarization scattering matrix , 1965 .

[51]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[52]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[53]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[54]  H. Mieras,et al.  Optimal polarizations of simple compound targets , 1983 .

[55]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[56]  Houra Rais,et al.  Polarization Symmetric Scatterer Metric Space , 2009, IEEE Transactions on Geoscience and Remote Sensing.