Capacity estimation and verification of quantum channels with arbitrarily correlated errors

The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel’s quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel’s one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.Estimating the quantum capacity allows one to assess the performance of quantum memories, communication channels, repeaters as well as error correction schemes. Here, the authors show how to estimate and verify one-shot quantum capacity in the most general case of arbitrarily correlated errors.

[1]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[2]  R. Renner,et al.  Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.

[3]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[4]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[5]  Marco Tomamichel,et al.  Chain Rules for Smooth Min- and Max-Entropies , 2012, IEEE Transactions on Information Theory.

[6]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[7]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[8]  Mario Berta,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2012 .

[9]  Renato Renner,et al.  Practical and Reliable Error Bars in Quantum Tomography. , 2015, Physical review letters.

[10]  Patrick J. Coles,et al.  Sifting attacks in finite-size quantum key distribution , 2015, 1506.07502.

[11]  F. Furrer,et al.  Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.

[12]  Michal Sedlak,et al.  Generalized Hofmann quantum process fidelity bounds for quantum filters , 2016 .

[13]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[14]  R. Blume-Kohout,et al.  Minimax Quantum Tomography: Estimators and Relative Entropy Bounds. , 2016, Physical review letters.

[15]  W. Stinespring Positive functions on *-algebras , 1955 .

[16]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[17]  K Horodecki,et al.  Unconditional privacy over channels which cannot convey quantum information. , 2008, Physical review letters.

[18]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[19]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[20]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[21]  Charles H. Bennett,et al.  WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing , 2011 .

[22]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[23]  Mario Berta,et al.  The smooth entropy formalism for von Neumann algebras , 2011, 1107.5460.

[24]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[25]  Matthias Christandl,et al.  Uncertainty, monogamy, and locking of quantum correlations , 2005, IEEE Transactions on Information Theory.

[26]  Kenneth Goodenough,et al.  Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels , 2015, 1511.08710.

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  Holger F Hofmann Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. , 2005, Physical review letters.

[29]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[30]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[31]  T Franz,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2011, Physical review letters.

[32]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[33]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[34]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[35]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[36]  M. Wilde,et al.  Upper bounds on secret-key agreement over lossy thermal bosonic channels , 2017, 1706.04590.

[37]  J. Wellner,et al.  Exponential bounds for the hypergeometric distribution. , 2015, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[38]  Giacomo Mauro D'Ariano,et al.  Characterization of quantum devices , 2004 .

[39]  Daniel Greenbaum,et al.  Introduction to Quantum Gate Set Tomography , 2015, 1509.02921.

[40]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[41]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[42]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[43]  C. Pfister,et al.  Decoherence estimation in quantum theory and beyond , 2016 .

[44]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.