Susceptibility to cyanidation of pyrrhotite-associated gold in pyrite calcines from (non)oxidizing roasting environments

[1]  Chun-bao Sun,et al.  The mechanism of microwave-induced phase transformation and sulfur conversion in gold-bearing pyrite under inert atmospheres , 2022, Minerals Engineering.

[2]  Xinwei Zhang,et al.  Unraveling the dissociation mechanism of gold in carbonaceous gold ore during vacuum roasting pretreatment: Effect of pyrite , 2022, Minerals Engineering.

[3]  A. Navarra,et al.  Integrated Artificial Neural Network and Discrete Event Simulation Framework for Regional Development of Refractory Gold Systems , 2022, Mining.

[4]  Yuexin Han,et al.  Pore Evolution in Refractory Gold Ore Formed by Oxidation Roasting and the Effect on the Cyanide Leaching Process , 2022, ACS omega.

[5]  Qiankun Wang,et al.  A review of Preg-robbing and the impact of chloride ions in the pressure oxidation of double refractory ores , 2020, Mineral Processing and Extractive Metallurgy Review.

[6]  F. Larachi,et al.  DFT simulations of pyrite galvanic interactions with bulk, solid-solution and nanoparticle Au occurrences – Insights into gold cyanidation , 2020 .

[7]  S. Kamali,et al.  Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy , 2019, SN Applied Sciences.

[8]  A. Harrison,et al.  Thermal desulfurization of pyrite: An in situ high-T neutron diffraction and DTA–TGA study , 2019, Journal of Materials Research.

[9]  Yongjun Peng,et al.  Mineral phase and structure changes during roasting of fine-grained carbonaceous gold ores and their effects on gold leaching efficiency , 2019, Chinese Journal of Chemical Engineering.

[10]  M. Namdeo,et al.  Preparation and Application of Magnetic Materials for the Removal of As (III) from Aqueous Solutions , 2018 .

[11]  D. Valeev,et al.  Kinetics of Iron Extraction from Coal Fly Ash by Hydrochloric Acid Leaching , 2018, Metals.

[12]  F. Larachi,et al.  Impact of silver sulphides on gold cyanidation with polymetal sulphides , 2018 .

[13]  F. Larachi,et al.  Impact of silver sulphide on gold cyanidation with conductive sulphide minerals , 2017 .

[14]  E. Ghali,et al.  A review on electrochemical dissolution and passivation of gold during cyanidation in presence of sulphides and oxides , 2017 .

[15]  Q. Feng,et al.  The Effect of Conditioning on the Flotation of Pyrrhotite in the Presence of Chlorite , 2017 .

[16]  F. Larachi,et al.  Effect of silver on gold cyanidation in mixed and segregated sulphidic minerals , 2017 .

[17]  F. Safizadeh,et al.  Leaching and electrochemical dissolution of gold in the presence of iron oxide minerals associated with roasted gold ore , 2016 .

[18]  C. Zheng,et al.  Transformation pathway of excluded mineral pyrite decomposition in CO2 atmosphere , 2015 .

[19]  A. Garbers-Craig,et al.  Fire and brimstone : the roasting of a Merensky PGM concentrate , 2015 .

[20]  C. Zheng,et al.  Effect of H2O on pyrite transformation behavior during oxy-fuel combustion , 2015 .

[21]  F. Larachi,et al.  Efficient strategies to enhance gold leaching during cyanidation of multi-sulfidic ores , 2014 .

[22]  Yen‐Hua Chen Thermal properties of nanocrystalline goethite, magnetite, and maghemite , 2013 .

[23]  F. Larachi,et al.  The role of multi-sulfidic mineral binary and ternary galvanic interactions in gold cyanidation in a multi-layer packed-bed electrochemical reactor , 2012 .

[24]  F. Larachi,et al.  Untangling galvanic and passivation phenomena induced by sulfide minerals on precious metal leaching using a new packed-bed electrochemical cyanidation reactor , 2011 .

[25]  L. Q. Lobo,et al.  The low-pressure phase diagram of sulfur , 2011 .

[26]  S. Fujimoto,et al.  Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature , 2009 .

[27]  A. Garg,et al.  In situ high-temperature phase transformation studies on pyrite , 2009 .

[28]  D. Paktunc,et al.  DISTRIBUTION OF GOLD IN PYRITE AND IN PRODUCTS OF ITS TRANSFORMATION RESULTING FROM ROASTING OF REFRACTORY GOLD ORE , 2006 .

[29]  Hai-peng Wang,et al.  A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1− x S (0 ≤  x  ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures , 2005 .

[30]  W. Yen,et al.  Mechanisms of galvanic interactions between gold and sulfide minerals in cyanide solution , 2005 .

[31]  A. Studer,et al.  Thermal expansion of troilite and pyrrhotite determined by in situ cooling (873 to 373 K) neutron powder diffraction measurements , 2005, Mineralogical Magazine.

[32]  K. Knight,et al.  Structure and magnetism in synthetic pyrrhotite Fe 7 S 8 : A powder neutron-diffraction study , 2004 .

[33]  F. Lincoln,et al.  Mechanochemical milling-induced reactions between gases and sulfide minerals: II. Reactions of CO2 with arsenopyrite, pyrrhotite and pyrite , 2001 .

[34]  Milton E. Wadsworth,et al.  Gold dissolution and activation in cyanide solution: kinetics and mechanism , 2000 .

[35]  S. Stølen,et al.  Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure , 2000 .

[36]  P. Walker,et al.  The kinetics and mechanism of the pyrite-to-pyrrhotite transformation , 1998 .

[37]  B. Fegley,et al.  The kinetics and mechanism of pyrite thermal decomposition , 1997 .

[38]  P. Holmes,et al.  Kinetic aspects of galvanic interactions between minerals during dissolution , 1995 .

[39]  G. Klingelhöfer,et al.  The Rate of Pyrite Decomposition on the Surface of Venus , 1995 .

[40]  J. Graham,et al.  Pyrolysis of arsenopyrite for gold recovery by cyanidation , 1995 .

[41]  S. L. Brooy,et al.  Review of gold extraction from ores , 1994 .

[42]  W. W. Barker,et al.  The thermodynamic properties of pyrrhotite and pyrite: A re-evaluation , 1986 .

[43]  Robert M. Hazen,et al.  Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars , 1980 .

[44]  R. Yund,et al.  Kinetics and Mechanism of Pyrite Exsolution from Pyrrhotite , 1970 .

[45]  R. Yund,et al.  Hexagonal and monoclinic pyrrhotites , 1969 .

[46]  R. H. Carpenter,et al.  Phase relations of pyrrhotite , 1965 .

[47]  P. Toulmin,et al.  A thermodynamic study of pyrite and pyrrhotite , 1964 .

[48]  R. Juza,et al.  Beiträge zur systematischen Verwandtschaftslehre. 57. Das Zustandsdiagramm Pyrit, Magnetkies, Troilit und Schwefeldampf, beurteilt nach Schwefeldampfdrucken, Röntgenbildern, Dichten und magnetischen Messungen , 1932 .

[49]  F. Larachi,et al.  The effect of flotation collectors on the electrochemical dissolution of gold during cyanidation , 2019, Minerals Engineering.

[50]  Lian Zhang,et al.  The chemical role of CO2 in pyrite thermal decomposition , 2015 .

[51]  T. Hirajima,et al.  Silicate Covering Layer on Pyrite Surface in the Presence of Silicon–Catechol Complex for Acid Mine Drainage Prevention , 2015 .

[52]  R. G. AnNoro MIXTURES OF HEXAGONAL AND MONOCLINIC PYRRHOTITE AND THE MEASUREMENT OF THE METAL CONTENT OF PYRRHOTITE BY X-RAY DIFI.'RACTION , 2007 .

[53]  G. Hu,et al.  Decomposition and oxidation of pyrite , 2006 .

[54]  P. Holmes,et al.  The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study , 2000 .

[55]  H. Rau Energetics of defect formation and interaction in pyrrhotite Fe1−xS and its homogeneity range , 1976 .

[56]  F. Grønvold,et al.  On the Phase Relations of Synthetic and Natural Pyrrhotites (Fe(1-x)S). , 1952 .

[57]  G. Hägg,et al.  Die Kristallstruktur von Troilit und Magnetkies , 1933 .

[58]  .. O. Filmer The dissolution of gold from roasted pyrite concentrates by A , 2022 .